Advertisement

On a mechanical approach to the prediction of earthquakes during horizontal motion of lithospheric plates

  • Vladimir A. Babeshko
  • Olga V. Evdokimova
  • Olga M. Babeshko
Original Paper

Abstract

The block element method is used to study a static boundary value problem for semi-infinite lithospheric plates interacting with a deformable basement along Conrad boundary. It is assumed that the lithospheric plates have straight line boundaries parallel to each other and are considered in two positions. In the first case, the distance between the ends of the plates does not vanish, whereas in the second case the distance is absent, although the plates do not interact. It is assumed that horizontal action on the plates, which are known to move extremely slowly, is so strong that vertical components of contact stresses can be neglected. Only shift stresses remain in the contact zone. The paper addresses the comparison of numerical simulation and block element approach to investigate this problem. In the first case, appearance of a concentration of contact stresses in the zone of contact of lithospheric plates is found, while in the second case the stress concentration turns out to be singular and leads to destruction of the base or edges of the lithospheric plates. In the second case, it is possible to determine the influence of various parameters of the problem on the magnitude of the coefficients for singularities in the contact stress concentrations. The numerical method does not have this capability. The obtained result allows one to predict the starting earthquakes based on monitoring of horizontal motions of the lithospheric plates.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by Ministry of education and science Russian Federation, project (9.8753.2017/8.9), UNC RAS, project Nos 01201354241, and supported by the Russian Foundation for Basic Research, projects Nos (16-41-230214), (16-41-230216), (16-48-230218), (17-08-00323) (18-01-00384), (18-05-80008).

References

  1. 1.
    Babeshko, V.A., Evdokimova, O.V., Babeshko, O.M.: On the possibility of predicting some types of earthquake by a mechanical approach. Acta Mech. (2018).  https://doi.org/10.1007/s00707-017-2092-0 MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Sadovskiy, M.A., Bolkhovitinov, L.G., Pisarenko, V.F.: Deformation of geophysical environment and seismical process. Nauka, Moscow (1987) (in Russian) Google Scholar
  3. 3.
    Milyukov, V.K., Mironov, A.P., Rogozhin, E.A., Steblov, G.M.: Velocities of contemporary movements of the Northern Caucasus estimated from GPS observations. Geotectonics 49(3), 210–218 (2015). (in Russian) CrossRefGoogle Scholar
  4. 4.
    Babeshko, V.A., Evdokimova, O.V., Babeshko, O.M.: The theory of the starting earthquake. In: Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation no. 1, pt. 2, pp. 37–80 (2016).  https://doi.org/10.31429/vestnik-13-1-2-37-80 CrossRefGoogle Scholar
  5. 5.
    Barber, J.R., Davies, M., Hills, D.A.: Friction elastic contact with periodic loading. Int. J. Solids Struct. 48, 2041–2047 (2011).  https://doi.org/10.1016/j.ijsolstr.2011.03.008 CrossRefGoogle Scholar
  6. 6.
    Mugadu, A., Hills, D.A., Barber, J.R., Sackfield, A.: The application of asymptotic solutions to characterising the process zone in almost complete frictional contacts. Int. J. Solids Struct. 41, 385–397 (2004).  https://doi.org/10.1016/j.ijsolstr.2003.09.038 CrossRefzbMATHGoogle Scholar
  7. 7.
    Dini, D., Sackfield, A., Hills, D.A.: Comprehensive bounded asymptotic solutions for incomplete contacts in partial slip. Int. J. Solids Struct. 53, 7049–7062 (2004).  https://doi.org/10.1016/j.jmps.2004.06.011 CrossRefzbMATHGoogle Scholar
  8. 8.
    Almqvist, A., Sahlin, F., Larson, R., Glavatskih, S.: On the dry elasto-plastic contact of nominally flat surfaces. Tribol. Int. 40(4), 574–579 (2007).  https://doi.org/10.1016/j.triboint.2005.11.008 CrossRefGoogle Scholar
  9. 9.
    Subramanian, C., Strafford, K.N.: Review of multicomponent and multilayer coatings for tribological applications. Wear 165, 85–95 (1993).  https://doi.org/10.1016/0043-1648(93)90376-W CrossRefGoogle Scholar
  10. 10.
    Zhou, S., Gao, X.L.: Solutions of half-space and half-plane contact problems based on surface elasticity. Z. Angew. Math. Phys. 64, 145–166 (2013).  https://doi.org/10.1007/s00033-012-0205-0 MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Xiao, L., Lapusta, N., Rosakis, A.J.: Pulse-like and crack-like ruptures in experiments mimicking crustal earthquakes. PNAS 104(48), 18931–18936 (2007).  https://doi.org/10.1073/pnas.0704268104 CrossRefGoogle Scholar
  12. 12.
    Xia, K., Rosakis, A.J., Kanamori, H.: Laboratory earthquakes: the sub-Rayleigh-to-supershear rupture transition. Science 303, 1859–1861 (2004).  https://doi.org/10.1126/science.1094022 CrossRefGoogle Scholar
  13. 13.
    Xia, K., Rosakis, A.J., Kanamori, H., Rice, J.R.: Laboratory earthquakes along inhomogeneous faults: directionality and supershear. Science 308, 681–684 (2005).  https://doi.org/10.1126/science.1108193 CrossRefGoogle Scholar
  14. 14.
    Zavyalov, A.: Medium-term earthquake forecast. Nauka, Moscow (2006) (in Russian) Google Scholar
  15. 15.
    Geller, R.J.: Earthquake prediction: a critical review. Geophys. J. Int. 131, 425–450 (1997).  https://doi.org/10.1111/j.1365-246X.1997.tb06588.x CrossRefGoogle Scholar
  16. 16.
    Kagan, Y.Y.: Are earthquakes predictable? Geophys. J. Int. 131, 505–525 (1997).  https://doi.org/10.1111/j.1365-246X.1997.tb06595.x CrossRefGoogle Scholar
  17. 17.
    Kerr, R.A.: Earthquake prediction: Mexican quake shows one way to look for the big ones. Science 203, 860–862 (1979).  https://doi.org/10.1126/science.203.4383.860 CrossRefGoogle Scholar
  18. 18.
    Main, I.G., Meredith, P.G.: Classification of earthquake precursors from a fracture mechanics model. Tectonophysics 167(2), 273–283 (1989).  https://doi.org/10.1016/0040-1951(89)90078-4 CrossRefGoogle Scholar
  19. 19.
    Mogi, K.: Earthquakes and fractures. Tectonophysics 5(1), 35–55 (1967).  https://doi.org/10.1016/0040-1951(67)90043-1 CrossRefGoogle Scholar
  20. 20.
    Scholz, C.H., Sykes, L.R., Aggarwal, Y.P.: Earthquake prediction: a physical basis. Science 181, 803–810 (1973).  https://doi.org/10.1126/science.181.4102.803 CrossRefGoogle Scholar
  21. 21.
    Babeshko, V.A., Evdokimova, O.V., Babeshko, O.M.: The external analysis in the problem of hidden defects and in the prediction of earthquakes. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, no. 2, pp. 19–28 (2016).  https://doi.org/10.31429/vestnik-13-2-19-28 CrossRefGoogle Scholar
  22. 22.
    Ulomov, V., Polyakova, T., Medvedeva, N.: On the long-term forecast of strong earthquakes in Central Asia and the Black Sea-Caspian region. In: Izvestiya, Physics of the Solid Earth, no. 4, pp. 31–47 (2002)Google Scholar
  23. 23.
    Brady, B.T.: Theory of earthquakes. I. A scale independent theory of rock failure. PAGEOPH 112, 701–725 (1974).  https://doi.org/10.1007/BF00876809 CrossRefGoogle Scholar
  24. 24.
    Brady, B.T.: Theory of earthquakes. II. Inclusion theory of crustal earthquakes. PAGEOPH 113, 149–168 (1975).  https://doi.org/10.1007/BF01592907 CrossRefGoogle Scholar
  25. 25.
    Atkinson, B.: Earthquake prediction. Phys. Technol. 12(2), 60–68 (1981).  https://doi.org/10.1088/0305-4624/12/2/I04 CrossRefGoogle Scholar
  26. 26.
    Rice J.: Mechanics of earthquake focus. Mir, Moscow (1982) (in Russian) Google Scholar
  27. 27.
    Mitchell, E.K., Fialko, Y., Brown, K.M.: Temperature dependence of frictional healing of westerly granite: experimental observations and numerical simulations. Geochem. Geophys. Geosyst. 14, 567–582 (2013).  https://doi.org/10.1029/2012GC004241 CrossRefGoogle Scholar
  28. 28.
    Mitchell, E.K., Fialko, Y., Brown, K.M.: Frictional properties of gabbro at conditions corresponding to slow slip events in subduction zones. Geochem. Geophys. Geosyst. 16, 4006–4020 (2015)CrossRefGoogle Scholar
  29. 29.
    Ide, S., Berosa, G.S.: Does apparent stress vary earthquake? Geophys. Res. Lett. 28(17), 3349–3352 (2001)CrossRefGoogle Scholar
  30. 30.
    Di Toro, G., Han, R., Hirose, T., De Paola, N., Nielsen, S., Mizoguchi, K., Ferri, F., Cocco, M., Shimamoto, T.: Fault lubrication during earthquakes. Nature 471, 494–498 (2011).  https://doi.org/10.1038/nature09838 CrossRefGoogle Scholar
  31. 31.
    Passelgue, F.X., Goldsby, D.L., Fabbri, O.: The influence of ambient fault temperature on flash-heating phenomena. Geophys. Res. Lett. 41, 828–835 (2014)CrossRefGoogle Scholar
  32. 32.
    Freed, A.M.: Earthquake triggering by static, dynamic, and postseismic stress transfer. Ann. Rev. Earth Planet. Sci. 33(1), 335–367 (2005).  https://doi.org/10.1146/annurev.earth.33.092203.122505 CrossRefGoogle Scholar
  33. 33.
    Bouchon, M., Durand, V., Marsan, D., Karabulut, H., Schmittbuhl, J.: The long precursory phase of most large interplate earthquakes. Nat. Geosci. 6, 299–302 (2013).  https://doi.org/10.1038/ngeo1770 CrossRefGoogle Scholar
  34. 34.
    Abramian, A., Vakulenko, S., Indeitsev, D., Bessonov, N.: Destruction of thin lms with damaged substrate as a result of waves localization. Acta Mech. 226(2), 295–309 (2015).  https://doi.org/10.1007/s00707-014-1183-4 MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Morozov, N.F.: Mathematical questions of the theory of cracks. Nauka, Moscow (1984) (in Russian) Google Scholar
  36. 36.
    Popov, G., Vaysfeld, N.: The torsion of the conical layered elastic cone. Acta Mech. 225, 67–76 (2014).  https://doi.org/10.1007/s00707-013-0957-4 MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Popov, G., Vaysfeld, N.: The steady-state oscillations of the elastic infinite cone loaded at a vertex by a concentrated force. Acta Mech. 221(3–4), 261–270 (2011).  https://doi.org/10.1007/s00707-011-0501-3 CrossRefzbMATHGoogle Scholar
  38. 38.
    Vaysfeld, N., Zhuravlova, Z.: On one new approach to the solving of an elasticity mixed plane problem for the semi-strip. Acta Mech. 226(12), 4159–4172 (2015).  https://doi.org/10.1007/s00707-015-1452-x MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Unger, D.J.: Linear elastic solutions for slotted plates. J. Elast. 108, 67–82 (2012).  https://doi.org/10.1007/s10659-011-9356-z MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    EU Framework Programme for Research and Technological Development. EU-Russian Open Days (2011). http://rp7.ffg.at/eu-russian_opendays
  41. 41.
    Babeshko, V.A., Evdokimova, O.V., Babeshko, O.M.: The problem of physical and mechanical precursors of an earthquake: place, time, and intensity. Dokl. Phys. 61(2), 92–97 (2016).  https://doi.org/10.1134/S1028335816020099 CrossRefGoogle Scholar
  42. 42.
    Vorovich, I.I., Babeshko, V.A.: Dynamic mixed problems of the theory of elasticity for nonclassical domains. Nauka, Moscow (1979) (in Russian) Google Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Southern Scientific Center of Russian Academy of ScienceRostov-on-DonRussia
  2. 2.Kuban State UniversityKrasnodarRussia

Personalised recommendations