Advertisement

Acta Mechanica

, Volume 229, Issue 10, pp 4141–4165 | Cite as

Dynamics of a beam on a bilinear elastic foundation under harmonic moving load

  • Diego Froio
  • Egidio Rizzi
  • Fernando M. F. Simões
  • António Pinto Da Costa
Original Paper
  • 61 Downloads

Abstract

The present paper is concerned with the numerical modelization of the transient dynamic response of a simply supported Euler–Bernoulli elastic beam resting on a Winkler-type foundation, under the action of a transverse concentrated load, moving at a constant velocity along the beam, displaying an harmonic-varying magnitude in time. The elastic foundation, assumed as homogeneous in space, behaves according to a bilinear constitutive law, characterized by two different stiffness coefficients in compression and in tension. A finite element method approach coupled with a direct integration algorithm is developed for efficiently tracing the nonlinear dynamic response of the beam-foundation system. An original automated procedure is set, as being apt to resolve all required space/time discretization issues. Extensive parametric numerical analyses are performed to investigate how the frequency of the harmonic moving load amplitude and the ratio between the foundation’s moduli in compression and in tension affect the so-called critical velocities of the moving load, leading to high transverse beam deflections. Analytical interpolating expressions are proposed and fitted for the achieved two-branch critical velocity trends. The present outcomes shall reveal potential practical implications in scenarios of contemporary railway engineering, especially in terms of lowering down the admissible high-speed train velocities, as for structural requirement or preventing potential passenger discomfort.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The first two authors wish to acknowledge public research funding from “Fondi di Ricerca d’Ateneo ex 60%” and a ministerial doctoral grant and funds at the ISA Doctoral School, University of Bergamo, Department of Engineering and Applied Sciences (Dalmine).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Achenbach, J.D., Sun, C.T.: Moving load on a flexibly supported Timoshenko beam. Int. J. Solids Struct. 1(4), 353–370 (1965)CrossRefGoogle Scholar
  2. 2.
    Adam, C., Salcher, P.: Dynamic effect of high-speed trains on simple bridge structures. Struct. Eng. Mech. 51(4), 581–599 (2014)CrossRefGoogle Scholar
  3. 3.
    Adam, C., Di Lorenzo, S., Failla, G., Pirrotta, A.: On the moving load problem in beam structures equipped with tuned mass dampers. Acta Mech. 52(13), 3101–3115 (2017)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Andersen, L., Nielsen, S.R.K., Kirkegaard, P.H.: Finite element modelling of infinite Euler beams on Kelvin foundations exposed to moving loads in convected co-ordinates. J. Sound Vib. 241(4), 587–604 (2001)CrossRefGoogle Scholar
  5. 5.
    Babagi, P.N., Neya, B.N., Dehestani, M.: Three dimensional solution of thick rectangular simply supported plates under a moving load. Meccanica (2017).  https://doi.org/10.1007/s11012-017-0653-x MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bathe, K.J.: Finite Element Procedures, 1st edn. Prentice-Hall, Englewood Cliffs (1996)zbMATHGoogle Scholar
  7. 7.
    Belytschko, T., Hughes, T.J.R.: Computational Methods for Transient Analysis, Vol. 1 in Computational Methods in Mechanics. North-Holland, Amsterdam, (1983)Google Scholar
  8. 8.
    Beskou, N.D., Theodorakopoulos, D.D.: Dynamic effects of moving loads on road pavements: a review. Soil Dyn. Earthq. Eng. 31(4), 547–567 (2011)CrossRefGoogle Scholar
  9. 9.
    Bogacz, R., Krzyỳski, T., Popp, K.: On the generalization of Mathews problem of the vibrations of a beam on elastic foundation. ZAMM - J. Appl. Math. Mech. 69(8), 243–252 (1989)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Bowles, J.E.: Foundation Analysis and Design, 5th edn. McGraw-Hill, New York (2001)Google Scholar
  11. 11.
    Buschman, R.G.: Integral Transformations, Operational Calculus, and Generalized Functions. Springer, Dordrecht (1996)CrossRefGoogle Scholar
  12. 12.
    Carta, G.: Effects of compressive load and support damping on the propagation of flexural waves in beams resting on elastic foundation. Arch. Appl. Mech. 82(9), 1219–1232 (2012)CrossRefGoogle Scholar
  13. 13.
    Castro Jorge, P., Simões, F.M.F., Pinto da Costa, A.: Dynamics of beams on non-uniform nonlinear foundations subjected to moving loads. Comput. Struct. 148, 26–34 (2015)CrossRefGoogle Scholar
  14. 14.
    Castro Jorge, P., Pinto da Costa, A., Simões, F.M.F.: Finite element dynamic analysis of finite beams on a bilinear foundation under a moving load. J. Sound Vib. 346, 328–344 (2015)CrossRefGoogle Scholar
  15. 15.
    Chang, S.Y.: Performance of the HHT-\(\alpha \) method for the solution of nonlinear systems. Int. J. Struct. Stab. Dyn. 8(2), 321–337 (2008)CrossRefGoogle Scholar
  16. 16.
    Chen, Y.H., Huang, Y.H., Shih, C.T.: Response of an infinite Timoshenko beam on a viscoelastic foundation to a harmonic moving load. J. Sound Vib. 241(5), 809–824 (2001)CrossRefGoogle Scholar
  17. 17.
    Chen, Y.H., Huang, Y.H.: Dynamic characteristics of infinite and finite railways to moving loads. J. Eng. Mech. 129(9), 987–995 (2003)CrossRefGoogle Scholar
  18. 18.
    Chen, J.S., Chen, K.Y.: Steady-state and stability of a beam on a damped tensionless foundation under a moving load. Int. J. Non-Linear Mech. 46(1), 180–185 (2011)CrossRefGoogle Scholar
  19. 19.
    Chonan, S.: Moving harmonic load on an elastically supported Timoshenko beam. ZAMM - J. Appl. Math. Mech. 58(1), 9–15 (1978)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Choros, J., Adams, G.G.: A steadily moving load on an elastic beam resting on a tensionless Winkler foundation. J. Appl. Mech. ASME, 79(APM), 175–180 (1979)CrossRefGoogle Scholar
  21. 21.
    Cifuentes, A.O.: Dynamic response of a beam excited by a moving mass. Finite Elem. Anal. Des. 5(3), 237–246 (1989)CrossRefGoogle Scholar
  22. 22.
    Curnier, A., He, Q.C., Zysset, P.: Conewise linear elastic materials. J. Elast. 37(1), 1–38 (1995)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Di Lorenzo, S., Di Paola, M., Failla, G., Pirrotta, A.: On the moving load problem in Euler–Bernoulli uniform beams with viscoelastic supports and joints. Acta Mech. 228(3), 805–821 (2017)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Dimitrovová, Z., Varandas, J.N.: Critical velocity of a load moving on a beam with a sudden change of foundation stiffness: applications to highspeed trains. Comput. Struct. 87(19), 1224–1232 (2009)CrossRefGoogle Scholar
  25. 25.
    Dimitrovová, Z.: A general procedure for the dynamic analysis of finite and infinite beams on piece-wise homogeneous foundation under moving loads. J. Sound Vib. 329(13), 2635–2653 (2010)CrossRefGoogle Scholar
  26. 26.
    Dimitrovová, Z., Rodrigues, A.F.S.: Critical velocity of a uniformly moving load. Adv. Eng. Softw. 50(1), 44–56 (2012)CrossRefGoogle Scholar
  27. 27.
    Dimitrovová, Z.: Critical velocity of a uniformly moving load on a beam supported by a finite depth foundation. J. Sound Vib. 366, 325–342 (2016)CrossRefGoogle Scholar
  28. 28.
    Dimitrovová, Z.: New semi-analytical solution for a uniformly moving mass on a beam on a two-parameter visco-elastic foundation. Int. J. Mech. Sci. 127, 142–162 (2017)CrossRefGoogle Scholar
  29. 29.
    Dimitrovová, Z.: Analysis of the critical velocity of a load moving on a beam supported by a finite depth foundation. Int. J. Solids Struct. 122–123, 128–147 (2017)CrossRefGoogle Scholar
  30. 30.
    Duffy, D.: The response of an infinite railroad track to a moving, vibrating mass. J. Appl. Mech. 57(1), 66–73 (1990)CrossRefGoogle Scholar
  31. 31.
    Dyniewicz, B.: Space-time finite element approach to general description of a moving inertial load. Finite Elem. Anal. Des. 62, 8–17 (2012)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Dyniewicz, B.: Efficient numerical approach to unbounded systems subjected to a moving load. Comput. Mech. 54(2), 321–329 (2014)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Eftekhari, S.A.: A differential quadrature procedure for linear and nonlinear steady state vibrations of infinite beams traversed by a moving point load. Meccanica 51(10), 2417–2434 (2016)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Froio, D., Rizzi, E.: Analytical solution for the elastic bending of beams lying on a variable Winkler support. Acta Mech. 227(4), 1157–1179 (2016)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Froio, D., Moioli, R., Rizzi, E.: Numerical dynamical analysis of beams on nonlinear elastic foundations under harmonic moving load. In: Proceedings of the VII European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS2016), Vol. 3, 4794–4809, ISBN: 978-618-82844-0-1, Crete Island, Greece, 5–10 June 2016, available online in Eccomas Proceedia, 10.7712/100016.2149.7515. https://www.eccomasproceedia.org/conferences/eccomas-congresses/eccomas-congress-2016/2149 (2016)
  36. 36.
    Froio, D., Rizzi, E.: Analytical solution for the elastic bending of beams lying on a linearly variable Winkler support. Int. J. Mech. Sci. 128–129, 680–694 (2017)CrossRefGoogle Scholar
  37. 37.
    Froio, D., Rizzi, E., Simões, F.M.F., Pinto da Costa, A.: Critical velocities of a beam on nonlinear elastic foundation under harmonic moving load. Procedia Engineering, 199 (Special Issue: X International Conference on Structural Dynamics, EURODYN 2017, Rome, Italy, 10–13 September 2017), pp. 2585–2590 (2017)CrossRefGoogle Scholar
  38. 38.
    Froio, D., Rizzi, E., Simões, F.M.F., Pinto da Costa, A.: DLSFEM-PML formulation for the steady-state response of a taut string on elastic support under moving load. Submitted for publication (2017)Google Scholar
  39. 39.
    Froio, D., Rizzi, E., Simões, F.M.F., Pinto da Costa, A.: True PML for elastically supported beam steady-state vibration analysis under moving load by DLSFEM formulation. Submitted for publication (2017)Google Scholar
  40. 40.
    Froio, D., Rizzi, E., Simões, F.M.F., Pinto da Costa, A.: Universal analytical solution of the steady-state response of an infinite beam on a Pasternak elastic foundation under moving load. Int. J. Solids Struct. 132–133, 245–263 (2018)CrossRefGoogle Scholar
  41. 41.
    Frýba, L.: Vibration of Solids and Structures under Moving Loads, 3rd edn. Research Institute of Transport (1972)Google Scholar
  42. 42.
    Hadi, M.N.S., Bodhinayake, B.C.: Non-linear finite element analysis of flexible pavements. Adv. Eng. Softw. 34(11–12), 657–662 (2003)CrossRefGoogle Scholar
  43. 43.
    Hilber, H.M., Hughes, T.J.R., Taylor, R.L.: Improved numerical dissipation for time integration algorithms in structural dynamics. Earthq. Eng. Struct. Dyn. 3(10), 283–292 (1977)CrossRefGoogle Scholar
  44. 44.
    Hilber, H.M., Hughes, T.J.R.: Collocation, Dissipation and ’Overshoot’ for time integration schemes in structural dynamics. Earthq. Eng. Struct. Dyn. 6(1), 99–117 (1978)CrossRefGoogle Scholar
  45. 45.
    Hosseini, S.A.H., Rahmani, O.: Exact solution for axial and transverse dynamic response of functionally graded nanobeam under moving constant load based on nonlocal elasticity theory. Meccanica 52(6), 1441–1457 (2017)MathSciNetCrossRefGoogle Scholar
  46. 46.
    Jin, J.: Dynamic displacements of an infinite beam on a poroelastic half space due to a moving oscillating load. Arch. Appl. Mech. 74(3–4), 277–287 (2004)CrossRefGoogle Scholar
  47. 47.
    Johnson, W.H., Kouskoulas, V.: Beam on bilinear foundation. J. Appl. Mech. ASME 72, 239–243 (1973)CrossRefGoogle Scholar
  48. 48.
    Jones, J.P., Butha, P.G.: Response of cylindrical shells to moving loads. J. Appl. Mech. ASME 31(1), 105–111 (1964)CrossRefGoogle Scholar
  49. 49.
    Kenney Jr., J.T.: Steady-state vibrations of beams on elastic foundations for moving load. J. Appl. Mech. Trans. ASME 21(4), 359–364 (1954)zbMATHGoogle Scholar
  50. 50.
    Kerr, A.D.: The continuously supported rail subjected to an axial force and a moving load. Int. J. Mech. Sci. 14(1), 71–78 (1972)CrossRefGoogle Scholar
  51. 51.
    Kerr, A.D.: Continuously supported beams and plates subjected to moving loads: a survey. Solid Mech. Arch. 6(4), 401–449 (1981)zbMATHGoogle Scholar
  52. 52.
    Kerr, A.D., Eberhardt, A.W.: Analyse des tensions dans des voies de chemin de fer présentant des réactions d’appui non-linéaires. Rail Int. 23(3), 41–54 (1992)Google Scholar
  53. 53.
    Lefeuve-Mesgouez, G., Mesgouez, A.: Three-dimensional dynamic response of a porous multilayered ground under moving loads of various distributions. Adv. Eng. Softw. 46(1), 75–84 (2012)CrossRefGoogle Scholar
  54. 54.
    Lu, J.-F., Zhong, L., Zhang, R.: Dynamic response of a periodic viaduct to a moving point loading. Arch. Appl. Mech. 85(1), 149–169 (2015)CrossRefGoogle Scholar
  55. 55.
    Lin, L., Adams, G.G.: Beam on tensionless elastic foundation. J. Eng. Mech. ASCE 113(4), 542–553 (1987)CrossRefGoogle Scholar
  56. 56.
    Mathews, P.M.: Vibrations of a beam on elastic foundation. Zeitschrift für Angewandte Mathematik und Mechanik (ZAMM) 38(3–4), 105–115 (1958)MathSciNetCrossRefGoogle Scholar
  57. 57.
    Mathews, P.M.: Vibrations of a beam on elastic foundation II. Zeitschrift für Angewandte Mathematik und Mechanik (ZAMM) 39(1–2), 13–19 (1959)MathSciNetCrossRefGoogle Scholar
  58. 58.
    Mazilu, T.: Interaction between a moving two-mass oscillator and an infinite homogeneous structure: Green’s functions method. Arch. Appl. Mech. 80(8), 909–927 (2010)CrossRefGoogle Scholar
  59. 59.
    Mazilu, T.: Instability of a train of oscillators moving along a beam on a viscoelastic foundation. J. Sound Vib. 332(19), 4597–4619 (2013)CrossRefGoogle Scholar
  60. 60.
    Mazilu, T.: The dynamics of an infinite uniform Euler-Bernoulli beam on bilinear viscoelastic foundation under moving loads. Procedia Engineering, 199 (Special Issue: X International Conference on Structural Dynamics, EURODYN 2017, Rome, Italy, 10–13 September 2017), pp. 2561–2566 (2017)Google Scholar
  61. 61.
    Metrikine, A., Dieterman, H.: Instability of vibrations of a mass moving uniformly along an axially compressed beam on a viscoelastic foundation. J. Sound Vib. 201(5), 567–576 (1997)CrossRefGoogle Scholar
  62. 62.
    Metrikine, A., Verichev, S.: Instability of vibrations of a moving two-mass oscillator on a flexibly supported Timoshenko beam. Arch. Appl. Mech. 71(9), 613–624 (2001)CrossRefGoogle Scholar
  63. 63.
    Mofid, M., Shadnam, M.: On the response of beams with internal hinges, under moving mass. Adv. Eng. Softw. 31(5), 323–328 (2000)CrossRefGoogle Scholar
  64. 64.
    Mofid, M., Tehranchi, A., Ostadhossein, A.: On the viscoelastic beam subjected to moving mass. Adv. Eng. Softw. 41(2), 240–247 (2010)CrossRefGoogle Scholar
  65. 65.
    Moioli, R.: Numerical Analysis of Beams on Nonlinear Winkler Elastic Foundations under Moving Load, M.Sc. Thesis in Mechanical Engineering, Advisor E. Rizzi, Co-Advisor D. Froio, Università di Bergamo, Scuola di Ingegneria, 31 March 2016Google Scholar
  66. 66.
    Ouyang, H.: Moving-load dynamic problems: a tutorial (with a brief overview). Mech. Syst. Signal Process. 25(6), 2039–2060 (2011)CrossRefGoogle Scholar
  67. 67.
    Rieker, J.R., Lin, Y.-H., Trethewey, M.W.: Discretization considerations in moving load finite element beam models. Finite Elem. Anal. Des. 21(3), 129–144 (1996)CrossRefGoogle Scholar
  68. 68.
    Rodrigues, C., Simões, F.M.F., Pinto da Costa, A., Froio, D., Rizzi, E.: Finite element dynamic analysis of beams on nonlinear elastic foundations under a moving oscillator. Eur. J. Mech./A Solids, 68, 9–24 (2018)CrossRefGoogle Scholar
  69. 69.
    Salcher, P., Adam, C.: Modeling of dynamic train-bridge interaction in high-speed railways. Acta Mech. 226(8), 2473–2495 (2015)MathSciNetCrossRefGoogle Scholar
  70. 70.
    Sanchez-Ricart, L.: Treatment of fast moving loads in elastodynamic problems with a space-time variational formulation. Meccanica 48(8), 1975–1994 (2013)MathSciNetCrossRefGoogle Scholar
  71. 71.
    Sapountzakis, E.J., Kampitsis, A.E.: Nonlinear response of shear deformable beams on tensionless nonlinear viscoelastic foundation under moving loads. J. Sound Vib. 330(22), 5410–5426 (2011)CrossRefGoogle Scholar
  72. 72.
    Steele, C.R.: The finite beam with a moving load. J. Appl. Mech. ASME 34(1), 111–118 (1967)CrossRefGoogle Scholar
  73. 73.
    Thambiratnam, D., Zhuge, Y.: Dynamic analysis of beams on an elastic foundation subjected to moving loads. J. Sound Vib. 198(2), 149–169 (1996)CrossRefGoogle Scholar
  74. 74.
    The MathWorks, Inc. MatLab, http://www.mathworks.com/products/matlab (2016)
  75. 75.
    Tsai, N.C., Westmann, R.E.: Beams on tensionless foundation. J. Eng. Mech. Div. ASCE 93(EM5), 1–12 (1967)Google Scholar
  76. 76.
    Van Dalen, K.N., Steenbergen, M.J.M.M.: Modeling of train-induced transitional wavefields. Proceedings of the III International Conference on Railway Technology: Research, Development and Maintenance (RAILWAYS2016), Cagliari, Italy, 5–8 April 2016, Civil-Comp Press, 110 (2016)Google Scholar
  77. 77.
    Watanabe, K., Biwa, S.: Elastodynamic Doppler effects. Acta Mech. 195(1–4), 27–59 (2008)CrossRefGoogle Scholar
  78. 78.
    Weitsman, Y.: Onset of separation between a beam and a tensionless elastic foundation under a moving load. Int. J. Mech. Sci. 13(8), 707–711 (1971)CrossRefGoogle Scholar
  79. 79.
    Yavari, A., Nouri, M., Mofid, M.: Discrete element analysis of dynamic response of Timoshenko beams under moving mass. Adv. Eng. Softw. 33(3), 143–153 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Engineering and Applied SciencesUniversity of BergamoDalmine (BG)Italy
  2. 2.CERIS, Instituto Superior TécnicoUniversidade de LisboaLisbonPortugal

Personalised recommendations