Advertisement

Acta Mechanica

, Volume 229, Issue 10, pp 4199–4214 | Cite as

Band gaps for wave propagation in 2-D periodic composite structures incorporating microstructure effects

  • G. Y. Zhang
  • X.-L. Gao
  • S. R. Ding
Original Paper

Abstract

A new model for determining band gaps for wave propagation in two-dimensional (2-D) periodic composite structures is developed using a modified couple stress theory. The general equation of motion and boundary conditions in the elasto-dynamics of the modified couple stress theory are first derived by a variational formulation based on Hamilton’s principle. The in-plane and anti-plane wave equations incorporating microstructure effects are then obtained explicitly from the general equation of motion. The plane wave expansion method and the Bloch theorem for periodic media are used to solve the in-plane and anti-plane wave equations, which are reduced to an eigenvalue problem in each case. The band gaps are determined from solving the characteristic equation and plotting the resulting eigen-frequencies. The new model recovers the classical elasticity-based model when microstructure effects are not considered. To quantitatively illustrate the newly developed model, a parametric study is conducted for 2-D periodic composite structures containing circular and square inclusions. The numerical results reveal that the microstructure effects on the band gaps are significant only when the unit cell size is small for both the composite structures. In addition, it is found that the volume fraction has a significant effect on the band gap size, and the inclusion shape has a large influence on the band gaps.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors would like to thank Prof.George J.Weng and two anonymous reviewers for their encouragement and helpful comments on an earlier version of the paper.

References

  1. 1.
    Billon, K., Zampetakis, I., Scarpa, F., Ouisse, M., Sadoulet-Reboul, E., Collet, M., Perriman, A., Hetherington, A.: Mechanics and band gaps in hierarchical auxetic rectangular perforated composite metamaterials. Compos. Struct. 160, 1042–1050 (2017)CrossRefGoogle Scholar
  2. 2.
    Cai, B., Wei, P.: Surface/interface effects on dispersion relations of 2D phononic crystals with parallel nanoholes or nanofibers. Acta Mech. 224, 2749–2758 (2013)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Cao, Y., Hou, Z., Liu, Y.: Convergence problem of plane-wave expansion method for phononic crystals. Phys. Lett. A 327(2), 247–253 (2004)CrossRefGoogle Scholar
  4. 4.
    Chen, A.L., Wang, Y.S.: Size-effect on band structures of nanoscale phononic crystals. Phys. E 44(1), 317–321 (2011)CrossRefGoogle Scholar
  5. 5.
    Chen, Y., Wang, L.: Periodic co-continuous acoustic metamaterials with overlapping locally resonant and Bragg band gaps. Appl. Phys. Lett. 105, 191907-1–191907-5 (2014)Google Scholar
  6. 6.
    Christensen, J., Kadic, M., Kraft, O., Wegener, M.: Vibrant times for mechanical metamaterials. MRS Commun. 5(03), 453–462 (2015)CrossRefGoogle Scholar
  7. 7.
    Ellis, R.W., Smith, C.W.: A thin-plate analysis and experimental evaluation of couple-stress effects. Exp. Mech. 7, 372–380 (1967)CrossRefGoogle Scholar
  8. 8.
    Eringen, A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54, 4703–4710 (1983)CrossRefGoogle Scholar
  9. 9.
    Gao, X.-L.: A new Timoshenko beam model incorporating microstructure and surface energy effects. Acta Mech. 226, 457–474 (2015)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Gao, X.-L., Huang, J.X., Reddy, J.N.: A non-classical third-order shear deformation plate model based on a modified couple stress theory. Acta Mech. 224, 2699–2718 (2013)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Gao, X.-L., Ma, H.M.: Solution of Eshelby’s inclusion problem with a bounded domain and Eshelby’s tensor for a spherical inclusion in a finite spherical matrix based on a simplified strain gradient elasticity theory. J. Mech. Phys. Solids 58, 779–797 (2010)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Gao, X.-L., Mall, S.: Variational solution for a cracked mosaic model of woven fabric composites. Int. J. Solids Struct. 38, 855–874 (2001)CrossRefGoogle Scholar
  13. 13.
    Gao, X.-L., Park, S.K.: Variational formulation of a simplified strain gradient elasticity theory and its application to a pressurized thick-walled cylinder problem. Int. J. Solids Struct. 44, 7486–7499 (2007)CrossRefGoogle Scholar
  14. 14.
    Gao, X.-L., Zhang, G.Y.: A microstructure- and surface energy-dependent third-order shear deformation beam model. Zeitschrift für angewandte Mathematik und Physik ZAMP 66, 1871–1894 (2015)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Gao, X.-L., Zhang, G.Y.: A non-classical Mindlin plate model incorporating microstructure, surface energy and foundation effects. Proc. R. Soc. A 472, 20160275-1–20160275-25 (2016)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Gourgiotis, P.A., Georgiadis, H.G.: Plane-strain crack problems in microstructured solids governed by dipolar gradient elasticity. J. Mech. Phys. Solids 57, 1898–1920 (2009)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Gurtin, M.E., Murdoch, A.I.: A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57, 291–323 (1975)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Gurtin, M.E., Murdoch, A.I.: Surface stress in solids. Int. J. Solids Struct. 14, 431–440 (1978)CrossRefGoogle Scholar
  19. 19.
    Hsu, J.-C., Wu, T.-T.: Efficient formulation for band-structure calculations of two-dimensional phononic-crystal plates. Phys. Rev. B 74, 144303-1–144303-8 (2006)Google Scholar
  20. 20.
    Ke, L.L., Wang, Y.S.: Size effect on dynamic stability of functionally graded microbeams based on a modified couple stress theory. Compos. Struct. 93, 342–350 (2011)CrossRefGoogle Scholar
  21. 21.
    Ke, L.L., Wang, Y.S., Yang, J., Kitipornchai, S.: Nonlinear free vibration of size-dependent functionally graded microbeams. Int. J. Eng. Sci. 50, 256–267 (2012)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Kittel, C.: Introduction to Solid State Physics, 8th edn. Wiley, New York (2004)zbMATHGoogle Scholar
  23. 23.
    Kushwaha, M.S., Halevi, P., Dobrzynski, L., Djafari-Rouhani, B.: Acoustic band structure of periodic elastic composites. Phys. Rev. Lett. 71(13), 2022–2025 (1993)CrossRefGoogle Scholar
  24. 24.
    Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J., Tong, P.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51, 1477–1508 (2003)CrossRefGoogle Scholar
  25. 25.
    Li, L.: Use of Fourier series in the analysis of discontinuous periodic structures. J. Opt. Soc. Am. A 13(9), 1870–1876 (1996)CrossRefGoogle Scholar
  26. 26.
    Li, Y., Wei, P., Zhou, Y.: Band gaps of elastic waves in 1-D phononic crystal with dipolar gradient elasticity. Acta Mech. 227, 1005–1023 (2016)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Liu, W., Chen, J., Liu, Y., Su, X.: Effect of interface/surface stress on the elastic wave band structure of two-dimensional phononic crystals. Phys. Lett. A 376, 605–609 (2012)CrossRefGoogle Scholar
  28. 28.
    Ma, H.M., Gao, X.-L., Reddy, J.N.: A microstructure-dependent Timoshenko beam model based on a modified couple stress theory. J. Mech. Phys. Solids 56, 3379–3391 (2008)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Ma, H.M., Gao, X.-L., Reddy, J.N.: A non-classical Mindlin plate model based on a modified couple stress theory. Acta Mech. 220, 217–235 (2011)CrossRefGoogle Scholar
  30. 30.
    Madeo, A., Neff, P., Ghiba, I.-D., Placidi, L., Rosi, G.: Wave propagation in relaxed micromorphic continua: modelling metamaterials with frequency band-gaps. Contin. Mech. Thermodyn. 27, 551–570 (2015)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Matlack, K.H., Bauhofer, A., Krödel, S., Palermo, A., Daraio, C.: Composite 3D-printed meta-structures for low frequency and broadband vibration absorption. Proc. Natl. Acad. Sci. 113(30), 8386–8390 (2016)CrossRefGoogle Scholar
  32. 32.
    Mindlin, R.D.: Influence of couple-stresses on stress concentrations. Exp. Mech. 3, 1–7 (1963)CrossRefGoogle Scholar
  33. 33.
    Nikolov, S., Han, C.-S., Raabe, D.: On the origin of size effects in small-strain elasticity of solid polymers. Int. J. Solids Struct. 44, 1582–1592 (2007)CrossRefGoogle Scholar
  34. 34.
    Park, S.K., Gao, X.-L.: Bernoulli–Euler beam model based on a modified couple stress theory. J. Micromech. Microeng. 16, 2355–2359 (2006)CrossRefGoogle Scholar
  35. 35.
    Park, S.K., Gao, X.-L.: Variational formulation of a modified couple stress theory and its application to a simple shear problem. Zeitschrift für angewandte Mathematik und Physik ZAMP 59, 904–917 (2008)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Phani, A.S., Woodhouse, J., Fleck, N.A.: Wave propagation in two-dimensional periodic lattices. J. Acoust. Soc. Am. 119(4), 1995–2005 (2006)CrossRefGoogle Scholar
  37. 37.
    Reddy, J.N.: Energy Principles and Variational Methods in Applied Mechanics, 2nd edn. Wiley, Hoboken, New Jersey (2002)Google Scholar
  38. 38.
    Sigalas, M.M.: Elastic wave band gaps and defect states in two-dimensional composites. J. Acoust. Soc. Am. 101, 1256–1261 (1997)CrossRefGoogle Scholar
  39. 39.
    Sigalas, M.M., Economou, E.N.: Elastic waves in plates with periodically placed inclusions. J. Appl. Phys. 75(6), 2845–2850 (1994)CrossRefGoogle Scholar
  40. 40.
    Susa, N.: Large absolute and polarization-independent photonic band gaps for various lattice structures and rod shapes. J. Appl. Phys. 91, 3501–3510 (2002)CrossRefGoogle Scholar
  41. 41.
    Suzuki, T., Yu, P.K.L.: Complex elastic wave band structures in three-dimensional periodic elastic media. J. Mech. Phys. Solids 46, 115–138 (1998)CrossRefGoogle Scholar
  42. 42.
    Tanaka, Y., Tomoyasu, Y., Tamura, S.-I.: Band structure of acoustic waves in phononic lattices: two-dimensional composites with large acoustic mismatch. Phys. Rev. B 62, 7387–7392 (2000)CrossRefGoogle Scholar
  43. 43.
    Wang, L.: Size-dependent vibration characteristics of fluid-conveying microtubes. J. Fluids Struct. 26, 675–684 (2010)CrossRefGoogle Scholar
  44. 44.
    Wang, Y.-S.: Nonlocal elastic analogy for wave propagation in periodic layered composites. Mech. Res. Commun. 26(6), 719–723 (1999)CrossRefGoogle Scholar
  45. 45.
    Wang, Y.-Z., Li, F.-M., Huang, W.-H., Wang, Y.-S.: Effects of inclusion shapes on the band gaps in two-dimensional piezoelectric phononic crystals. J. Phys. Condens. Matter 19, 496204-1–496204-9 (2007)Google Scholar
  46. 46.
    Yang, F., Chong, A.C.M., Lam, D.C.C., Tong, P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39, 2731–2743 (2002)CrossRefGoogle Scholar
  47. 47.
    Zhang, G.Y., Gao, X.-L., Bishop, J.E., Fang, H.E.: Band gaps for elastic wave propagation in a periodic composite beam structure incorporating microstructure and surface energy effects. Compos. Struct. 189, 263–272 (2018)CrossRefGoogle Scholar
  48. 48.
    Zhang, G.Y., Gao, X.-L., Guo, Z.Y.: A non-classical model for an orthotropic Kirchhoff plate embedded in a viscoelastic medium. Acta Mech. 228, 3811–3825 (2017)MathSciNetCrossRefGoogle Scholar
  49. 49.
    Zhang, G.Y., Gao, X.-L., Wang, J.Z.: A non-classical model for circular Kirchhoff plates incorporating microstructure and surface energy effects. Acta Mech. 226, 4073–4085 (2015)MathSciNetCrossRefGoogle Scholar
  50. 50.
    Zhen, N., Wang, Y.S., Zhang, C.: Surface/interface effect on band structures of nanosized phononic crystals. Mech. Res. Commun. 46, 81–89 (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringSouthern Methodist UniversityDallasUSA
  2. 2.Department of Aeronautics and Astronautics, Institute of Mechanics and Computational EngineeringFudan UniversityShanghaiChina

Personalised recommendations