Acta Mechanica

, Volume 229, Issue 10, pp 4295–4301 | Cite as

An explanation of the drag reduction via polymer solute

  • K. Y. VolokhEmail author


The remarkable phenomenon of the drag reduction via addition of small amounts of polymer molecules to a Newtonian solvent was observed experimentally long ago. However, the theoretical explanations of this observation are not overwhelming yet. In this note, we present a possible theoretical account of the phenomenon. It is based on the use of the Navier–Stokes model with viscous strength for the solvent and the upper-convected Maxwell model for the polymer solute. Simple analytical calculation shows that the laminar flow of the solvent is stabilized by an addition of the polymer solute and, thus, the transition to the chaotic and slower on average turbulent motion is suppressed.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. 1.
    Avila, K., Moxey, D., de Lozar, A., Avila, M., Barkley, D., Hof, B.: The onset of turbulence in pipe flow. Science 333, 192–196 (2011)CrossRefGoogle Scholar
  2. 2.
    Barkley, D.: Theoretical perspective on the route to turbulence in a pipe. J. Fluid Mech. 803, P1 (2016)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Boelens, A., Muthukumar, M.: Rotational relaxation time as unifying time scale for polymer and fiber drag reduction. Phys. Rev. E 93, 052503 (2016)CrossRefGoogle Scholar
  4. 4.
    Cadot, O., Bonn, D., Douady, S.: Turbulent drag reduction in a closed flow system: boundary layer versus bulk effects. Phys. Fluids 10, 426 (1998)CrossRefGoogle Scholar
  5. 5.
    Doi, M.: Soft Matter Physics. Oxford University Press, Oxford (2013)CrossRefGoogle Scholar
  6. 6.
    Dubief, Y., White, C., Terrapon, V.E., Sheqfeh, E.S.G., Moin, P., Lele, S.K.: On the coherent drag-reducing and turbulence-enhancing behavior of polymers in wall flows. J. Fluid Mech. 514, 271–280 (2004)CrossRefGoogle Scholar
  7. 7.
    Eckhardt, B.: A critical point for turbulence. Science 333, 165–166 (2011)CrossRefGoogle Scholar
  8. 8.
    Faisst, H., Eckhardt, B.: Traveling waves in pipe flow. Phys. Rev. Lett. 91, 224501 (2003)CrossRefGoogle Scholar
  9. 9.
    Gupta, V.K., Sureshkumar, R., Khomami, B.: Polymer chain dynamics in Newtonian and viscoelastic turbulent channel flows. Phys. Fluids 16, 1546 (2004)CrossRefGoogle Scholar
  10. 10.
    Gyr, A., Bewersdorff, H.-W.: Drag Reduction of Turbulent Flows by Additives. Kluwer, Alphen aan den Rijn (1995)CrossRefGoogle Scholar
  11. 11.
    Hof, B., van Dorn, C.W.H., Westerweel, J., Nieuwstadt, F.T.M., Eckhardt, B., Wedin, H., Kerswell, R.R., Waleffe, F.: Experimental observation of nonlinear traveling waves in turbulent pipe flow. Science 305, 1594–1598 (2004)CrossRefGoogle Scholar
  12. 12.
    Landau, L.D., Lifshitz, E.M.: Fluid Mechanics. Pergamon Press, Oxford (1987)Google Scholar
  13. 13.
    Liberzon, A., Guala, M., Lüthi, B., Kinzelbach, W.: Turbulence in dilute polymer solutions. Phys. Fluids 17, 031707 (2005)CrossRefGoogle Scholar
  14. 14.
    Lumley, J.L.: Drag reduction by additives. Ann. Rev. Fluid Mech. 1, 367–383 (1969)CrossRefGoogle Scholar
  15. 15.
    Nadolnik, R.H., Haigh, W.W.: Bibliography on skin friction reduction with polymers and other boundary-layer additives. Appl. Mech. Rev. 48, 351–460 (1995)CrossRefGoogle Scholar
  16. 16.
    Oldroyd, J.G.: Proceedings 1st International Congress on Rheology vol. 2, pp. 130–134. North-Holland (1949)Google Scholar
  17. 17.
    Perlin, M., Dowling, D., Ceccio, S.: Freeman scholar review: passive and active skin-friction drag reduction in turbulent boundary layers. J. Fluids Eng. 138, 091104 (2016)CrossRefGoogle Scholar
  18. 18.
    Phan-Thien, N.: Understanding Viscoelasticity: An Introduction to Rheology. Springer, Berlin (2013)CrossRefGoogle Scholar
  19. 19.
    Procaccia, I., Lvov, V., Benzi, R.: Colloquium: theory of drag reduction by polymers in wall-bounded turbulence. Rev. Mod. Phys. 80, 225 (2008)CrossRefGoogle Scholar
  20. 20.
    Ptasinski, P.K., Boersma, B.J., Hulsen, M.A., Nieuwstadt, F.T.M., Van Den Brule, B.H.A.A., Hunt, J.C.R.: Turbulent channel flow near maximum drag reduction: simulations, experiments and mechanisms. J. Fluid Mech. 490, 251–291 (2003)CrossRefGoogle Scholar
  21. 21.
    Raghavan, B.V., Ostoja-Starzewski, M.: Shear-thinning of molecular fluids in Couette flow. Phys. Fluids 29, 023103 (2017)CrossRefGoogle Scholar
  22. 22.
    Tanner, R.I., Walters, K.: Rheology: An Historical Perspective. Elsevier, New York (1998)zbMATHGoogle Scholar
  23. 23.
    Toms, B.A.: Observation on the flow of linear polymer solutions through straight tubes at large Reynolds numbers. In: Proceeding of the 1st Int Congress on Rheology vol. 2, pp. 135–141. North-Holland (1949)Google Scholar
  24. 24.
    Vlachogiannis, M., Liberatore, M.W., McHugh, A.J., Hanratty, T.J.: Effectiveness of a drag reducing polymer: relation to molecular weight distribution and structuring. Phys. Fluids 15, 3786 (2003)CrossRefGoogle Scholar
  25. 25.
    Volokh, K.Y.: An investigation into the stability of a shear thinning fluid. Int. J. Eng. Sci. 47, 740–743 (2009)CrossRefGoogle Scholar
  26. 26.
    Volokh, K.Y.: Navier–Stokes model with viscous strength. Comput. Model. Eng. Sci. 92, 87–101 (2013)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Wedin, H., Kerswell, R.R.: Exact coherent structures in pipe flow: wave solutions. J. Fluid Mech. 508, 333–371 (2004)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Wygnanski, I.J., Champagne, F.H.: On transition in a pipe Part 1. The origin of puffs and slugs and the flow in a turbulent slug. J. Fluid Mech. 59, 281–335 (1973)CrossRefGoogle Scholar
  29. 29.
    Xi, L., Bai, X.: Marginal turbulent state of viscoelastic fluids: a polymer drag reduction perspective. Phys. Rev. E 93, 043118 (2016)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Civil and Environmental EngineeringTechnion - I.I.T.HaifaIsrael

Personalised recommendations