A moving Kriging meshfree method with naturally stabilized nodal integration for analysis of functionally graded material sandwich plates

Original Paper
  • 11 Downloads

Abstract

This paper presents a moving Kriging meshfree method based on a naturally stabilized nodal integration (NSNI) for bending, free vibration and buckling analyses of isotropic and sandwiched functionally graded plates within the framework of higher-order shear deformation theories. A key feature of the present formulation is to develop a NSNI technique for the moving Kriging meshfree method. Using this scheme, the strains are directly evaluated at the same nodes as the direct nodal integration (DNI). Importantly, the computational approach alleviates instability solutions in the DNI and significantly decreases the computational cost from using the traditional high-order Gauss quadrature. Being different from the stabilized conforming nodal integration scheme which uses the divergence theorem to evaluate the strains by boundary integrations, the NSNI adopts a naturally implicit gradient expansion. The NSNI is then integrated into the Galerkin weak form for deriving the discrete system equations. Due to satisfying the Kronecker delta function property of the moving Kriging integration shape function, the enforcement of essential boundary conditions in the present method is similar to the finite element method. Through numerical examples, the effects of geometries, stiffness ratios, volume fraction and boundary conditions are studied to prove the efficiency of the present approach.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant No. 107.02-2016.19.

References

  1. 1.
    Brischetto, S., Tornabene, F., Fantuzzi, N., Viola, E.: 3D exact and 2D generalized differential quadrature models for free vibration analysis of functionally graded plates and cylinders. Meccanica 51, 2059–2098 (2016)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Swaminathan, K., Naveenkumar, D.T., Zenkour, A.M., Carrera, E.: Stress, vibration and buckling analyses of FGM plates—a state-of-the-art review. Compos. Struct. 120, 10–31 (2015)CrossRefGoogle Scholar
  3. 3.
    Pan, E.: Exact solution for functionally graded anisotropic elastic composite laminates. J. Compos. Mater. 37, 1903–1920 (2003)CrossRefGoogle Scholar
  4. 4.
    Pagano, N.J.: Exact solutions for rectangular bidirectional composites and sandwich plates. J. Compos. Mater. 4, 20–34 (1970)CrossRefGoogle Scholar
  5. 5.
    Vel, S.S., Batra, R.C.: Three-dimensional exact solution for the vibration of functionally graded rectangular plates. J. Sound Vib. 272, 703–730 (2004)CrossRefGoogle Scholar
  6. 6.
    Kashtalyan, M.: Three-dimensional elasticity solution for bending of functionally graded rectangular plates. Eur. J. Mech. A. Solids 23, 853–864 (2004)CrossRefMATHGoogle Scholar
  7. 7.
    Zenkour, A.M.: Benchmark trigonometric and 3-D elasticity solutions for an exponentially graded thick rectangular plate. Arch. Appl. Mech. 77, 197–214 (2006)CrossRefMATHGoogle Scholar
  8. 8.
    Reddy, J.N., Cheng, Z.Q.: Three-dimensional thermomechanical deformations of functionally graded rectangular plates. Eur. J. Mech. A. Solids 20, 841–855 (2001)CrossRefMATHGoogle Scholar
  9. 9.
    Cheng, Z.Q., Batra, R.C.: Deflection relationships between the homogeneous Kirchhoff plate theory and different functionally graded plate theories. Arch. Mech. 52, 143–158 (2000)MATHGoogle Scholar
  10. 10.
    Natarajan, S., Baiz, P.M., Bordas, S.P.A., Rabczuk, T., Kerfriden, P.: Natural frequencies of cracked functionally graded material plates by the extended finite element method. Compos. Struct. 93, 3082–3092 (2011)CrossRefGoogle Scholar
  11. 11.
    Natarajan, S., Ferreira, A.J.M., Bordas, S.P.A., Carrera, E., Cinefra, M.: Analysis of composite plates by a unified formulation-cell based smoothed finite element method and field consistent elements. Compos. Struct. 105, 75–81 (2013)CrossRefGoogle Scholar
  12. 12.
    Rodrigues, J.D., Natarajan, S., Ferreira, A.J.M., Carrera, E., Cinefra, M., Bordas, S.P.A.: Analysis of composite plates through cell-based smoothed finite element and 4-noded mixed interpolation of tensorial components techniques. Comput. Struct. 135, 83–87 (2014)CrossRefGoogle Scholar
  13. 13.
    Nguyen-Xuan, H., Tran, V.L., Nguyen-Thoi, T., Vu-Do, H.C.: Analysis of functionally graded plates using an edge-based smoothed finite element method. Compos. Struct. 93, 3019–3039 (2011)CrossRefGoogle Scholar
  14. 14.
    Do, V.V.N., Thai, C.H.: A modified Kirchhoff plate theory for analyzing thermo-mechanical static and buckling responses of functionally graded material plates. Thin Walled Struct. 117, 113–126 (2017)CrossRefGoogle Scholar
  15. 15.
    Nguyen, N.T., Hui, D., Lee, J., Nguyen-Xuan, H.: An efficient computational approach for size-dependent analysis of functionally graded nanoplates. Comput. Methods Appl. Mech. Eng. 297, 191–218 (2015)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Ambartsumian, S.A.: On the theory of bending plates. Izv Otd Tech Nauk ANSSSR 5, 269–277 (1958)Google Scholar
  17. 17.
    Reddy, J.N.: Analysis of functionally graded plates. Int. J. Numer. Methods Eng. 684, 663–684 (2000)CrossRefMATHGoogle Scholar
  18. 18.
    Nguyen-Xuan, H., Thai, H.C., Nguyen-Thoi, T.: Isogeometric finite element analysis of composite sandwich plates using a higher order shear deformation theory. Compos. Part B: Eng. 55, 558–574 (2013)CrossRefGoogle Scholar
  19. 19.
    Nguyen, N.T., Thai, H.C., Nguyen-Xuan, H.: On the general framework of high order shear deformation theories for laminated composite plate structures: a novel unified approach. Int. J. Mech. Sci. 110, 242–255 (2016)CrossRefGoogle Scholar
  20. 20.
    Soldatos, K.P.: A transverse shear deformation theory for homogenous monoclinic plates. Acta Mech. 94, 195–220 (1992)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Touratier, M.: An efficient standard plate theory. Int. J. Eng. Sci. 29, 745–752 (1991)CrossRefMATHGoogle Scholar
  22. 22.
    Thai, H.C., Ferreira, A.J.M., Rabczuk, T., Bordas, S.P.A., Nguyen-Xuan, H.: Isogeometric analysis of laminated composite and sandwich plates using a new inverse trigonometric shear deformation theory. Eur. J. Mech. A. Solids 43, 89–108 (2014)CrossRefGoogle Scholar
  23. 23.
    Thai, H.C., Kulasegaram, S., Tran, V.L., Nguyen-Xuan, H.: Generalized shear deformation theory for functionally graded isotropic and sandwich plates based on isogeometric approach. Comput. Struct. 141, 94–112 (2014)CrossRefGoogle Scholar
  24. 24.
    Karama, M., Afaq, K.S., Mistou, S.: Mechanical behavior of laminated composite beam by new multi-layered laminated composite structures model with transverse shear stress continuity. Int. J. Solids Struct. 40, 1525–1546 (2003)CrossRefMATHGoogle Scholar
  25. 25.
    Aydogdu, M.: A new shear deformation theory for laminated composite plates. Compos. Struct. 89, 94–101 (2009)CrossRefGoogle Scholar
  26. 26.
    Zenkour, A.M.: A comprehensive analysis of functionally graded sandwich plates: part 1 deflection and stresses. Int. J. Solids Struct. 42, 5224–5242 (2005)CrossRefMATHGoogle Scholar
  27. 27.
    Zenkour, A.M.: A comprehensive analysis of functionally graded sandwich plates: part 2 buckling and free vibration. Int. J. Solids Struct. 42, 5243–5258 (2005)CrossRefMATHGoogle Scholar
  28. 28.
    Nguyen, T.N., Thai, C.H., Nguyen-Xuan, H.: A novel computational approach for functionally graded isotropic and sandwich plate structures based on a rotation-free meshfree method. Thin Walled Struct. 107, 473–488 (2016)CrossRefGoogle Scholar
  29. 29.
    Tran, V.L., Thai, H.C., Nguyen-Xuan, H.: An isogeometric finite element formulation for thermal buckling analysis of functionally graded plates. Finite Elem. Anal. Des. 73, 65–76 (2013)CrossRefGoogle Scholar
  30. 30.
    Neves, A.M.A., Ferreira, A.J.M., Carrera, E., Roque, C.M.C., Cinefra, M., Jorge, R.M.N., Soares, C.M.M.: A quasi-3D sinusoidal shear deformation theory for the static and free vibration analysis of functionally graded plates. Compos. Part B: Eng. 43, 711–725 (2012)CrossRefMATHGoogle Scholar
  31. 31.
    Neves, A.M.A., Ferreira, A.J.M., Carrera, E., Cinefra, M., Roque, C.M.C., Jorge, R.M.N., Soares, C.M.M.: Static, free vibration and buckling analysis of isotropic and sandwich functionally graded plates using a quasi-3D higher-order shear deformation theory and a meshless technique. Compos. Part B: Eng. 44, 657–674 (2013)CrossRefMATHGoogle Scholar
  32. 32.
    Zenkour, A.M.: Bending analysis of functionally graded sandwich plates using a simple four-unknown shear and normal deformations theory. J. Sandw. Struct. Mater. 15, 629–656 (2013)CrossRefGoogle Scholar
  33. 33.
    Zenkour, A.M.: A simple four-unknown refined theory for bending analysis of functionally graded plates. Appl. Math. Model. 37, 9041–9051 (2013)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Thai, H.C., Zenkour, A.M., Wahab, M.A., Nguyen-Xuan, H.: A simple four unknown shear and normal deformations theory for functionally graded isotropic and sandwich plates based on isogeometric analysis. Compos. Struct. 139, 77–95 (2016)CrossRefGoogle Scholar
  35. 35.
    Thai, H.T., Kim, S.E.: A simple quasi-3D sinusoidal shear deformation theory for functionally graded plates. Compos. Struct. 99, 172–180 (2013)CrossRefGoogle Scholar
  36. 36.
    Mantari, J.L., Soares, C.G.: A trigonometric plate theory with 5-unknowns and stretching effect for advanced composite plates. Compos. Struct. 107, 396–405 (2014)CrossRefGoogle Scholar
  37. 37.
    Nguyen-Thanh, N., Rabczuk, T., Nguyen-Xuan, H., Bordas, S.P.A.: A smoothed finite element method for shell analysis. Comput. Methods Appl. Mech. Eng. 198, 165–177 (2008)CrossRefMATHGoogle Scholar
  38. 38.
    Nguyen-Xuan, H., Rabczuk, T., Nguyen-Thanh, N., Nguyen-Thoi, T., Bordas, S.P.A.: A node-based smoothed finite element method with stabilized discrete shear gap technique for analysis of Reissner–Mindlin plates. Comput. Mech. 46, 679–701 (2010)MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Nguyen-Thanh, N., Rabczuk, T., Nguyen-Xuan, H., Bordas, S.P.A.: An alternative alpha finite element method with discrete shear gap technique for analysis of isotropic Mindlin–Reissner plates. Finite Elem. Anal. Des. 47, 519–535 (2011)CrossRefGoogle Scholar
  40. 40.
    Thai, C.H., Tran, L.V., Tran, D.T., Nguyen-Thoi, T., Nguyen-Xuan, H.: Analysis of laminated composite plates using higher-order shear deformation plate theory and node-based smoothed discrete shear gap method. Appl. Math. Model. 36, 5657–5677 (2012)MathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    Natarajan, S., Ferreira, A.J.M., Bordas, S.P.A., Carrera, E., Cinefra, M., Zenkour, A.M.: Analysis of functionally graded material plates using triangular elements with cell-based smoothed discrete shear gap method. Math. Probl. Eng. 2014, 247932 (2014)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Nguyen-Thanh, N., Kiendl, J., Nguyen-Xuan, H., Wüchner, R., Bletzinger, K.U., Bazilevs, Y., Rabczuk, T.: Rotation free isogeometric thin shell analysis using PHT-splines. Comput. Methods Appl. Mech. Eng. 200, 3410–3424 (2011)MathSciNetCrossRefMATHGoogle Scholar
  43. 43.
    Gu, L.: Moving Kriging interpolation and element-free Galerkin method. Int. J. Numer. Methods Eng. 56, 1–11 (2003)CrossRefMATHGoogle Scholar
  44. 44.
    Chen, J.S., Wu, C.T., Yoon, S., You, Y.: A stabilized conforming nodal integration for Galerkin mesh-free methods. Int. J. Numer. Methods Eng. 50, 435–466 (2001)CrossRefMATHGoogle Scholar
  45. 45.
    Puso, M., Chen, J.S., Zywicz, E., Elmer, W.: Meshfree and finite element nodal integration methods. Int. J. Numer. Methods Eng. 74, 416–446 (2008)MathSciNetCrossRefMATHGoogle Scholar
  46. 46.
    Hillman, M., Chen, J.S., Chi, S.W.: Stabilized and variationally consistent nodal integration for meshfree modeling of impact problems. Comput. Part. Mech. 1, 245–256 (2014)CrossRefGoogle Scholar
  47. 47.
    Beissel, S., Belytschko, T.: Nodal integration of the element-free Galerkin method. Comput. Methods Appl. Mech. Eng. 139, 49–74 (1996)MathSciNetCrossRefMATHGoogle Scholar
  48. 48.
    Nagashima, T.: Node-by-node meshless approach and its applications to structural analyses. Int. J. Numer. Methods Eng. 46, 341–385 (1999)CrossRefMATHGoogle Scholar
  49. 49.
    Liu, G.R., Zhang, G.Y., Wang, Y.Y., Zhong, Z.H., Li, G.Y., Han, X.: A nodal integration technique for meshfree radial point interpolation method (NI-RPIM). Int. J. Solids Struct. 44, 3840–3890 (2007)CrossRefMATHGoogle Scholar
  50. 50.
    Wu, C.T., Koishi, M., Hu, W.: A displacement smoothing induced strain gradient stabilization for the meshfree Galerkin nodal integration method. Comput. Mech. 56, 19–37 (2015)MathSciNetCrossRefMATHGoogle Scholar
  51. 51.
    Hillman, M., Chen, J.S.: An accelerated, convergent, and stable nodal integration in Galerkin meshfree methods for linear and nonlinear mechanics. Int. J. Numer. Methods Eng. 107, 603–630 (2016)MathSciNetCrossRefMATHGoogle Scholar
  52. 52.
    Li, Q., Lu, V., Kou, K.: Three-dimensional vibration analysis of functionally graded material sandwich plates. J. Sound Vib. 311, 498–515 (2008)CrossRefGoogle Scholar
  53. 53.
    Thai, H.C., Do, N.V.V., Nguyen-Xuan, H.: An improved moving Kriging meshfree method for analysis of isotropic and sandwich functionally graded material plates using higher-order shear deformation theory. Eng. Anal. Bound. Elem. 64, 122–136 (2016)MathSciNetCrossRefGoogle Scholar
  54. 54.
    Thai, H.C., Nguyen, N.T., Rabczuk, T., Nguyen-Xuan, H.: An improved moving Kriging meshfree method for plate analysis using a refined plate theory. Comput. Struct. 176, 34–49 (2016)CrossRefGoogle Scholar
  55. 55.
    Liu, G.R.: Meshfree Methods: Moving Beyond the Finite Element Method. CRC Press, Boca Raton (2003)Google Scholar
  56. 56.
    Thai, C.H., Ferreira, A.J.M., Nguyen-Xuan, H.: Naturally stabilized nodal integration meshfree formulations for analysis of laminated composite and sandwich plates. Compos. Struct. 178, 260–276 (2017)CrossRefGoogle Scholar
  57. 57.
    Thai, C.H., Ferreira, A.J.M., Rabczuk, T., Nguyen-Xuan, H.: A naturally stabilized nodal integration meshfree formulation for carbon nanotube-reinforced composite plate analysis. Eng. Anal. Bound. Elem. (2017).  https://doi.org/10.1016/j.enganabound.2017.10.018 Google Scholar
  58. 58.
    Liu, W.K., Ong, J.S., Uras, R.A.: Finite element stabilization matrices—a unification approach. Comput. Methods Appl. Mech. Eng. 53, 13–46 (1985)MathSciNetCrossRefMATHGoogle Scholar
  59. 59.
    Koko, J.: A Matlab mesh generator for the two-dimensional finite element method. Appl. Math. Comput. 250, 650–664 (2015)MathSciNetMATHGoogle Scholar
  60. 60.
    Carrera, E., Brischetto, S., Cinefra, M., Soave, M.: Effects of thickness stretching in functionally graded plates and shells. Compos. Part B: Eng. 42, 123–133 (2011)CrossRefGoogle Scholar
  61. 61.
    Li, X.Y., Ding, H.J., Chen, W.Q.: Elasticity solutions for a transversely isotropic functionally graded circular plate subject to an axisymmetric transverse load qr\(^{k}\). Int. J. Solids Struct. 45, 191–210 (2008)CrossRefMATHGoogle Scholar
  62. 62.
    Reddy, J.N., Wang, C.M., Kitipornchai, S.: Axisymmetric bending of functionally graded circular and annular plates. Eur. J. Mech. A. Solids 18, 185–199 (1999)CrossRefMATHGoogle Scholar
  63. 63.
    Yin, S., Hale, J.S., Yu, T., Bui, T.Q., Bordas, S.P.A.: Isogeometric locking-free plate element: a simple first order shear deformation theory for functionally graded plates. Compos. Struct. 118, 121–138 (2014)CrossRefGoogle Scholar
  64. 64.
    Reddy, J.N.: Theory and Analysis of Elastic Plates and Shells. CRC Press, Boca Raton (2007)Google Scholar
  65. 65.
    Nguyen, K.D., Nguyen-Xuan, H.: An isogeometric finite element approach for three-dimensional static and dynamic analysis of functionally graded material plate structures. Compos. Struct. 132, 423–439 (2015)CrossRefGoogle Scholar
  66. 66.
    Natarajan, S., Manickam, G.: Bending and vibration of functionally graded material sandwich plates using an accurate theory. Finite Elem. Anal. Des. 57, 32–42 (2012)CrossRefGoogle Scholar
  67. 67.
    Tornabene, F.: Free vibration analysis of functionally graded conical, cylindrical shell and annular plate structures with a four-parameter power-law distribution. Comput. Methods Appl. Mech. Eng. 198, 2911–2935 (2009)CrossRefMATHGoogle Scholar
  68. 68.
    Ma, L.S., Wang, T.J.: Relationship between axisymmetric bending and buckling solutions of FGM circular plates based on third-order plate theory and classical plate theory. Int. J. Solids Struct. 41, 85–101 (2004)CrossRefMATHGoogle Scholar
  69. 69.
    Saidi, A.R., Rasouli, A., Sahraee, S.: Axisymmetric bending and buckling analysis of thick functionally graded circular plates using unconstrained third-order shear deformation plate theory. Compos. Struct. 89, 110–119 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Division of Computational MechanicsTon Duc Thang UniversityHo Chi Minh CityVietnam
  2. 2.Faculty of Civil EngineeringTon Duc Thang UniversityHo Chi Minh CityVietnam
  3. 3.Departamento de Engenharia Mecanica, Faculdade de EngenhariaUniversidade do PortoPortoPortugal
  4. 4.Institute of Research and DevelopmentDuy Tan UniversityDa NangVietnam
  5. 5.Soete Laboratory, Faculty of Engineering and ArchitectureGhent UniversityGhentBelgium
  6. 6.Center for Interdisciplinary Research in TechnologyHo Chi Minh City University of Technology (Hutech)Ho Chi Minh CityVietnam
  7. 7.Department of Architectural EngineeringSejong UniversitySeoulRepublic of Korea

Personalised recommendations