On wall-normal motions of inertial spheroids in vertical turbulent channel flows

Original Paper
  • 38 Downloads

Abstract

Dynamics of inertial non-spherical particles in upward and downward turbulent channel flows are investigated. Oblate (disk-like) and prolate (rod-like) spheroids are considered in a Lagrangian point-particle approach in which the turbulence field is obtained by direct numerical simulations. Fluid and particle statistics are conditionally sampled with the view to distinguish between particles moving toward or away from the channel walls. Outward-moving particles tend to locate more in lower-speed streamwise fluid streaks than inward-moving particles. For highly inertial spheroids, these tendencies are differently affected by gravity in upward and downward flows. The gravity force is therefore believed to influence turbophoresis. The tendency of oblate and prolate spheroids to orient parallel with and normal to the spanwise direction near the walls is stronger for outward- than for inward-moving particles. These distinctions are ascribed to the wall-normal force on the spheroids from the surrounding fluid. In the absence of gravity, heavy spheroids in the channel center align randomly with the almost isotropic fluid vorticity. Gravity is seen to have a de-isotropization effect on the particles’ orientation in the inertial frame.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lundell, F., Söderberg, L.D., Alfredsson, P.H.: Fluid mechanics of papermaking. Annu. Rev. Fluid Mech. 43, 195–217 (2011)CrossRefMATHGoogle Scholar
  2. 2.
    Ma, L., Jones, J.M., Pourkashanian, M., Williams, A.: Modelling the combustion of pulverized biomass in an industrial combustion test furnace. Fuel 86, 1959–1965 (2007)CrossRefGoogle Scholar
  3. 3.
    Siewert, C., Kunnen, R.P.J., Meinke, M., Schröder, W.: Orientation statistics and settling velocity of ellipsoids in decaying turbulence. Atmos. Res. 142, 45–56 (2014)CrossRefGoogle Scholar
  4. 4.
    Pécseli, H., Trulsen, J., Fiksen, Ø.: Predator-prey encounter and capture rates for plankton in turbulent environments. Prog. Oceanogr. 101, 14–32 (2012)CrossRefGoogle Scholar
  5. 5.
    Andersson, H.I., Soldati, A.: Anisotropic particles in turbulence: status and outlook. Acta Mech. 224, 2219–2223 (2013)CrossRefGoogle Scholar
  6. 6.
    Marchioli, C., Soldati, A., Kuerten, J.G.M., Arcen, B., Taniere, A., Goldensoph, G., Squires, K.D., Cargnelutti, M.F., Portela, L.M.: Statistics of particle dispersion in direct numerical simulations of wall-bounded turbulence: results of an international collaborative benchmark test. Int. J. Multiph. Flow 34, 879–893 (2008)CrossRefGoogle Scholar
  7. 7.
    Yamamoto, Y., Potthoff, M., Tanaka, T., Kajishima, T., Tsuji, Y.: Large-eddy simulation of turbulent gas-particle flow in a vertical channel: effect of considering inter-particle collisions. J. Fluid Mech. 442, 303–334 (2001)CrossRefMATHGoogle Scholar
  8. 8.
    Balachandar, S., Eaton, J.K.: Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech. 42, 111–133 (2010)CrossRefMATHGoogle Scholar
  9. 9.
    Voth, G.A., Soldati, A.: Anisotropic particles in turbulence. Annu. Rev. Fluid Mech. 49, 249–276 (2017)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Jeffery, G.B.: The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. Lond. Ser. A 102, 161–179 (1922)CrossRefMATHGoogle Scholar
  11. 11.
    Brenner, H.: The Stokes resistance of an arbitrary particle-IV. Arbitrary fields of flow. Chem. Eng. Sci. 19, 703–727 (1964)CrossRefGoogle Scholar
  12. 12.
    Gallily, I., Cohen, A.: On the orderly nature of the motion of nonspherical aerosol particles. II. Inertial collision between a spherical large droplet and an axially symmetrical elongated particle. J. Colloid Interface Sci. 68, 338–356 (1979)CrossRefGoogle Scholar
  13. 13.
    Harper, E.Y., Chang, I.: Maximum dissipation resulting from lift in a slow viscous shear flow. J. Fluid Mech. 33, 209–225 (1968)CrossRefMATHGoogle Scholar
  14. 14.
    Marchioli, C.: Physics and modelling of particle deposition and resuspension in wall-bounded turbulence. In: Minier, J.-P., Pozorski, J. (eds.) Particles in Wall-Bounded Turbulent Flows: Deposition, Re-suspension and Agglomeration, pp. 151–208. Springer, Berlin (2017)CrossRefGoogle Scholar
  15. 15.
    Kuerten, J.G.M.: Point-particle DNS and LES of particle-laden turbulent flow—a state-of-the-art review. Flow Turbul. Combust. 97, 689–713 (2016)CrossRefGoogle Scholar
  16. 16.
    Zhang, H., Ahmadi, G., Fan, F., McLaughlin, J.B.: Ellipsoidal particles transport and deposition in turbulent channel flows. Int. J. Multiph. Flow 27, 971–1009 (2001)CrossRefMATHGoogle Scholar
  17. 17.
    Mortensen, P.H., Andersson, H.I., Gillissen, J.J.J., Boersma, B.J.: Dynamics of prolate ellipsoidal particles in a turbulent channel flow. Phys. Fluids 20, 093302 (2008)CrossRefMATHGoogle Scholar
  18. 18.
    Marchioli, C., Fantoni, M., Soldati, A.: Orientation, distribution, and deposition of elongated, inertial fibers in turbulent channel flow. Phys. Fluids 22, 033301 (2010)CrossRefMATHGoogle Scholar
  19. 19.
    Njobuenwu, D.O., Fairweather, M.: Effect of shape on inertial particle dynamics in a channel flow. Flow Turbul. Combust. 92, 83–101 (2014)CrossRefGoogle Scholar
  20. 20.
    Yin, C., Rosendahl, L., Kaer, S.K., Sorensen, H.: Modelling the motion of cylindrical particles in a nonuniform flow. Chem. Eng. Sci. 58, 3489–3498 (2003)CrossRefGoogle Scholar
  21. 21.
    Challabotla, N.R., Zhao, L., Andersson, H.I.: Orientation and rotation of inertial disk particles in wall turbulence. J. Fluid Mech. 766, R2 (2015)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Zhao, L., Marchioli, C., Andersson, H.I.: Stokes number effects on particle slip velocity in wall-bounded turbulence and implications for dispersion models. Phys. Fluids 24, 021705 (2012)CrossRefGoogle Scholar
  23. 23.
    Zhao, L., Marchioli, C., Andersson, H.I.: Slip velocity of rigid fibers in turbulent channel flow. Phys. Fluids 26, 063302 (2014)CrossRefGoogle Scholar
  24. 24.
    Zhao, F., van Wachem, B.G.M.: Direct numerical simulation of ellipsoidal particles in turbulent channel flow. Acta Mech. 224, 2331–2358 (2013)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Mortensen, P.H., Andersson, H.I., Gillissen, J.J.J., Boersma, B.J.: On the orientation of ellipsoidal particles in a turbulent shear flow. Int. J. Multiph. Flow 34, 678–683 (2008)CrossRefMATHGoogle Scholar
  26. 26.
    Zhao, L., Andersson, H.I., Gillissen, J.J.J.: On inertial effects of long fibers in wall turbulence: fiber orientation and fiber stresses. Acta Mech. 224, 2375–2384 (2013)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Marchioli, C., Soldati, A.: Rotation statistics of fibers in wall shear turbulence. Acta Mech. 224, 2311–2329 (2013)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Challabotla, N.R., Zhao, L., Andersson, H.I.: Shape effects on dynamics of inertia-free spheroids in wall turbulence. Phys. Fluids 27, 061703 (2015)CrossRefGoogle Scholar
  29. 29.
    Zhao, L., Challabotla, N.R., Andersson, H.I., Variano, E.A.: Rotation of nonspherical particles in turbulent channel flow. Phys. Rev. Lett. 115, 244501 (2015)CrossRefGoogle Scholar
  30. 30.
    Njobuenwu, D.O., Fairweather, M.: Simulation of inertial fibre orientation in turbulent flow. Phys. Fluids 28, 063307 (2016)CrossRefGoogle Scholar
  31. 31.
    Njobuenwu, D.O., Fairweather, M.: Large eddy simulation of inertial fiber deposition mechanisms in a vertical downward turbulent channel flow. AlChE J. 63, 1451–1465 (2017)CrossRefGoogle Scholar
  32. 32.
    Kim, J., Moin, P., Moser, R.: Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133–166 (1987)CrossRefMATHGoogle Scholar
  33. 33.
    Kaftori, D., Hetsroni, G., Banerjee, S.: Particle behavior in the turbulent boundary layer. I. Motion, deposition, and entrainment. Phys. Fluids 7, 1095–1106 (1995)CrossRefGoogle Scholar
  34. 34.
    Pan, Y., Banerjee, S.: Numerical simulation of particle interactions with wall turbulence. Phys. Fluids 8, 2733–2755 (1996)CrossRefGoogle Scholar
  35. 35.
    Marchioli, C., Soldati, A.: Mechanisms for particle transfer and segregation in a turbulent boundary layer. J. Fluid Mech. 468, 283–315 (2002)CrossRefMATHGoogle Scholar
  36. 36.
    Brooke, J.W., Hanratty, T., McLaughlin, J.: Free-flight mixing and deposition of aerosols. Phys. Fluids 6, 3404–3415 (1994)CrossRefGoogle Scholar
  37. 37.
    Soldati, A., Marchioli, C.: Physics and modelling of turbulent particle deposition and entrainment: review of a systematic study. Int. J. Multiph. Flow 35, 827–839 (2009)CrossRefGoogle Scholar
  38. 38.
    Narayanan, C., Lakehal, D., Botto, L., Soldati, A.: Mechanisms of particle deposition in a fully developed turbulent open channel flow. Phys. Fluids 15, 763–775 (2003)CrossRefMATHGoogle Scholar
  39. 39.
    Bernardini, M.: Reynolds number scaling of inertial particle statistics in turbulent channel flows. J. Fluid Mech. 758, R1 (2014)CrossRefGoogle Scholar
  40. 40.
    Marusic, I., McKeon, B., Monkewitz, P., Nagib, H., Smits, A., Sreenivasan, K.: Wall-bounded turbulent flows at high Reynolds numbers: recent advances and key issues. Phys. Fluids 22, 065103 (2010)CrossRefMATHGoogle Scholar
  41. 41.
    Bagchi, P., Balachandar, S.: Effect of turbulence on the drag and lift of a particle. Phys. Fluids 15, 3496–3513 (2003)CrossRefMATHGoogle Scholar
  42. 42.
    Uijttewaal, W.S.J., Oliemans, R.V.A.: Particle dispersion and deposition in direct numerical and large eddy simulations of vertical pipe flows. Phys. Fluids 8, 2590–2604 (1996)CrossRefMATHGoogle Scholar
  43. 43.
    Oliveira, J., van der Geld, C., Kuerten, J.: Concentration and velocity statistics of inertial particles in upward and downward pipe flow. J. Fluid Mech. 822, 640–663 (2017)MathSciNetCrossRefMATHGoogle Scholar
  44. 44.
    Nilsen, C., Andersson, H.I., Zhao, L.: A Voronoi analysis of preferential concentration in a vertical channel flow. Phys. Fluids 25, 115108 (2013)CrossRefGoogle Scholar
  45. 45.
    Marchioli, C., Picciotto, M., Soldati, A.: Influence of gravity and lift on particle velocity statistics and transfer rates in turbulent vertical channel flow. Int. J. Multiph. Flow 33, 227–251 (2007)CrossRefGoogle Scholar
  46. 46.
    Njobuenwu D.O., Fairweather M.: Large eddy simulation of non-spherical particle deposition in a vertical turbulent channel flow. In: Proceedings of the 24th European Symposium on Computer Aided Process Engineering, pp. 907–912. Budapest (2014)Google Scholar
  47. 47.
    van Wachem, B., Zastawny, M., Zhao, F., Mallouppas, G.: Modelling of gas-solid turbulent channel flow with non-spherical particles with large Stokes numbers. Int. J. Multiph. Flow 68, 80–92 (2015)MathSciNetCrossRefGoogle Scholar
  48. 48.
    Challabotla, N.R., Zhao, L., Andersson, H.I.: Gravity effects on fiber dynamics in wall turbulence. Flow Turbul. Combust. 97, 1095–1110 (2016)CrossRefGoogle Scholar
  49. 49.
    Challabotla, N.R., Zhao, L., Andersson, H.I.: On fiber behavior in turbulent vertical channel flow. Chem. Eng. Sci. 153, 75–86 (2016)CrossRefGoogle Scholar
  50. 50.
    Yuan, W., Andersson, H.I., Zhao, L., Challabotla, N.R., Deng, J.: Dynamics of disk-like particles in turbulent vertical channel flow. Int. J. Multiph. Flow 96, 86–100 (2017)MathSciNetCrossRefGoogle Scholar
  51. 51.
    Zhao, L., Andersson, H.I.: On particle spin in two-way coupled turbulent channel flow simulations. Phys. Fluids 23, 093302 (2011)CrossRefGoogle Scholar
  52. 52.
    Shapiro, M., Goldenberg, M.: Deposition of glass-fiber particles from turbulent air-flow in a pipe. J. Aerosol Sci. 24, 65–87 (1993)CrossRefGoogle Scholar
  53. 53.
    Andersson, H.I., Zhao, L., Variano, E.A.: On the anisotropic vorticity in turbulent channel flows. J. Fluids Eng. 137, 084503 (2015)CrossRefGoogle Scholar
  54. 54.
    Arcen, B., Ouchene, R., Khalij, M., Tanière, A.: Prolate spheroidal particles’ behavior in a vertical wall-bounded turbulent flow. Phys. Fluids 29, 093301 (2017)CrossRefGoogle Scholar
  55. 55.
    Ouchene, R., Khalij, M., Tanière, A., Arcen, B.: Drag, lift and torque coefficients for ellipsoidal particles: From low to moderate particle Reynolds numbers. Comput. Fluids 113, 53–64 (2015)MathSciNetCrossRefGoogle Scholar
  56. 56.
    Marcus, G.G., Parsa, S., Kramel, S., Ni, R., Voth, G.A.: Measurements of the solid-body rotation of anisotropic particles in 3D turbulence. New J. Phys. 16, 102001 (2014)CrossRefGoogle Scholar
  57. 57.
    Gustavsson, K., Einarsson, J., Mehlig, B.: Tumbling of small axisymmetric particles in random and turbulent flows. Phys. Rev. Lett. 112, 014501 (2014)CrossRefGoogle Scholar
  58. 58.
    Byron, M., Einarsson, J., Gustavsson, K., Voth, G., Mehlig, B., Variano, E.: Shape-dependence of particle rotation in isotropic turbulence. Phys. Fluids 27, 035101 (2015)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Process Equipment and Control EngineeringXi’an Jiaotong UniversityXi’anChina
  2. 2.Department of Energy and Process EngineeringNorwegian University of Science and TechnologyTrondheimNorway
  3. 3.AML, Department of Engineering MechanicsTsinghua UniversityBeijingChina

Personalised recommendations