An investigation of the mechanical behavior of initially curved microplates under electrostatic actuation

Original Paper

Abstract

In this article, we investigate the mechanical behavior of initially curved microplates under electrostatic actuation. Microplates are essential components of many Micro-Electro-Mechanical System devices; however, they commonly undergo an initial curvature imperfection, due to the microfabrication process. Initial curvature imperfection significantly affects the mechanical behavior of microplates. In this work, we derive a dynamic analogue of the von Kármán governing equation for such plates. These equations are then used to develop a reduced order model based on the Galerkin procedure to simulate the static and dynamic behavior of the microplate. Two profiles of initial curvature commonly encountered in microfabricated structures are considered, where one assumes a variation in shape along one dimension of the plate only (cylindrical bending shape) while the other assumes a variation in shape along both dimensions of the plate. Their effects on both the static and dynamic responses of the microplates are examined and compared. We validate the reduced order model by comparing the calculated static behavior and the fundamental natural frequency with those computed by a finite element model over a range of the initial plate rise. The static behavior of the microplate is investigated when varying the DC voltage. Then, the dynamic behavior of the microplate is examined under the application of a harmonic AC voltage superimposed to a DC voltage.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zengerle, R., Ulrich, J., Kluge, S., Richter, M., Richter, A.: A bidirectional silicon micropump. Sens. Actuators A Phys. 50(1), 81–86 (1995)CrossRefGoogle Scholar
  2. 2.
    Zengerle, R., Richter, A., Sandmaier, H.: A micro membrane pump with electrostatic actuation. In: Proceedings of IEEE Micro Electro Mechanical Systems, 1992, MEMS’92, An Investigation of Micro Structures, Sensors, Actuators, Machines, and Robots (1992)Google Scholar
  3. 3.
    Maillefer, D., van Lintel, H., Rey-Mermet, G., Hirschi, R.: A high-performance silicon micropump for an implantable drug delivery system. In: Twelfth IEEE International Conference on Micro Electro Mechanical Systems MEMS’99 (1999)Google Scholar
  4. 4.
    Je, C.H., Lee, J., Yang, W.S., Kim, J., Cho, Y.-H.: A surface-micromachined capacitive microphone with improved sensitivity. J. Micromech. Microeng. 23(5), 055018 (2013)CrossRefGoogle Scholar
  5. 5.
    Suresh, K., Uma, G., Umapathy, M.: Design of a resonance-based mass sensor using a self-sensing piezoelectric actuator. Smart Mater. Struct. 21(2), 025015 (2012)CrossRefGoogle Scholar
  6. 6.
    Celep, Z.: Free flexural vibration of initially imperfect thin plates with large elastic amplitudes. ZAMM Z. Angew. Math. Mech. 56(9), 423–428 (1976)CrossRefMATHGoogle Scholar
  7. 7.
    Celep, Z.: Shear and rotatory inertia effects on the large amplitude vibration of the initially imperfect plates. J. Appl. Mech. 47(3), 662–666 (1980)CrossRefMATHGoogle Scholar
  8. 8.
    Yamaki, N., Chiba, M.: Nonlinear vibrations of a clamped rectangular plate with initial deflection and initial edge displacement–Part I: Theory. Thin Walled Struct. 1(1), 3–29 (1983)CrossRefGoogle Scholar
  9. 9.
    Yamaki, N., Otomo, K., Chiba, M.: Nonlinear vibrations of a clamped rectangular plate with initial deflection and initial edge displacement–Part II: Experiment. Thin Walled Struct. 1(2), 101–119 (1983)CrossRefMATHGoogle Scholar
  10. 10.
    Marın, J., Perkins, N.C., Vorus, W.: Non-linear response of predeformed plates subject to harmonic in-plane edge loading. J. Sound Vib. 176(4), 515–529 (1994)CrossRefMATHGoogle Scholar
  11. 11.
    Lin, C., Chen, L.: Large-amplitude vibration of an initially imperfect moderately thick plate. J. Sound Vib. 135(2), 213–224 (1989)CrossRefGoogle Scholar
  12. 12.
    Ostiguy, G.L., Sassi, S.: Effects of initial geometric imperfections on dynamic behavior of rectangular plates. Nonlinear Dyn. 3(3), 165–181 (1992)CrossRefGoogle Scholar
  13. 13.
    Liu, W., Yeh, F.: Non-linear vibrations of initially imperfect, orthotropic, moderately thick plates with edge restraints. J. Sound Vib. 165(1), 101–122 (1993)CrossRefMATHGoogle Scholar
  14. 14.
    Amabili, M.: Theory and experiments for large-amplitude vibrations of rectangular plates with geometric imperfections. J. Sound Vib. 291(3), 539–565 (2006)CrossRefGoogle Scholar
  15. 15.
    Alijani, F., Amabili, M.: Theory and experiments for nonlinear vibrations of imperfect rectangular plates with free edges. J. Sound Vib. 332(14), 3564–3588 (2013)CrossRefGoogle Scholar
  16. 16.
    Chen, C.S., Cheng, W.S., Tan, A.H.: Non-linear vibration of initially stressed plates with initial imperfections. Thin Walled Struct. 43(1), 33–45 (2005)CrossRefGoogle Scholar
  17. 17.
    Chen, C.S., Hsu, C.Y.: Imperfection sensitivity in the nonlinear vibration oscillations of initially stressed plates. Appl. Math. Comput. 190(1), 465–475 (2007)MathSciNetMATHGoogle Scholar
  18. 18.
    Huang, H.: Large-amplitude vibration of imperfect rectangular, circular and laminated plate with viscous damping (Ph.D. Dissertation).http://scholarworks.uno.edu/td/1924/ (2014)
  19. 19.
    Faris, W.F.: Nonlinear dynamics of annular and circular plates under thermal and electrical loadings (Ph.D. Dissertation). https://vtechworks.lib.vt.edu/handle/10919/11100 (2003)
  20. 20.
    Vogl, G.W., Nayfeh, A.H.: A reduced-order model for electrically actuated clamped circular plates. J. Micromech. Microeng. 15(4), 684–690 (2005)CrossRefGoogle Scholar
  21. 21.
    Zhao, X., Abdel-Rahman, E.M., Nayfeh, A.H.: A reduced-order model for electrically actuated microplates. J. Micromech. Microeng. 14(7), 900–906 (2004)CrossRefGoogle Scholar
  22. 22.
    Li, Z., Zhao, L., Jiang, Z., Ye, Z., Dai, L., Zhao, Y.: Mechanical behavior analysis on electrostatically actuated rectangular microplates. J. Micromech. Microeng. 25(3), 035007 (2015)CrossRefGoogle Scholar
  23. 23.
    Jallouli, A., Kacem, N., Bourbon, G., Le Moal, P., Walter, V., Lardies, J.: Pull-in instability tuning in imperfect nonlinear circular microplates under electrostatic actuation. Phys. Lett. A 380(46), 3886–3890 (2016)CrossRefGoogle Scholar
  24. 24.
    Rahman, M.M., Chowdhury, S.: Square diaphragm CMUT capacitance calculation using a new deflection shape function. J. Sens. 2011, Article ID 581910 (2011).  https://doi.org/10.1155/2011/581910
  25. 25.
    Akhbari, S., Sammoura, F., Yang, C., Heidari, A., Horsley, D., Lin, L.: Self-curved diaphragms by stress engineering for highly responsive pMUT. In: 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS) (2015)Google Scholar
  26. 26.
    Ventsel, E., Krauthammer, T.: Thin Plates and Shells: Theory: Analysis, and Applications. CRC Press, Boca Raton (2001)CrossRefGoogle Scholar
  27. 27.
    Nayfeh, A.H., Pai, P.F.: Linear and Nonlinear Structural Mechanics. Wiley, Hoboken (2008)MATHGoogle Scholar
  28. 28.
    Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, Hoboken (2008)MATHGoogle Scholar
  29. 29.
    Salmon, R.: Practical use of Hamilton’s principle. J. Fluid Mech. 132, 431–44 (1983)CrossRefMATHGoogle Scholar
  30. 30.
    Lobitz, D., Nayfeh, A., Mook, D.: Non-linear analysis of vibrations of irregular plates. J. Sound Vib. 50(2), 203–217 (1977)CrossRefMATHGoogle Scholar
  31. 31.
    Younis, M.I., Abdel-Rahman, E.M., Nayfeh, A.: A reduced-order model for electrically actuated microbeam-based MEMS. J. Microelectromech. Syst. 12(5), 672–680 (2003)CrossRefGoogle Scholar
  32. 32.
    Nayfeh, A.H., Younis, M.I., Abdel-Rahman, E.M.: Reduced-order models for MEMS applications. Nonlinear Dyn. 41(1–3), 211–236 (2005)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Saghir, S., Bellaredj, M., Ramini, A., Younis, M.: Initially curved microplates under electrostatic actuation: theory and experiment. J. Micromech. Microeng. 26(9), 095004 (2016)CrossRefGoogle Scholar
  34. 34.
    COMSOL Multiphysics, (http://www.comsol.com)

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.4700 King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
  2. 2.University of Management and Technology (UMT)SialkotPakistan

Personalised recommendations