Acta Mechanica

, Volume 229, Issue 4, pp 1703–1719 | Cite as

Effects of entanglements and finite extensibility of polymer chains on the mechanical behavior of hydrogels

Original Paper
  • 53 Downloads

Abstract

Polymer networks usually have many entanglements as well as a finite extensibility due to the uncrossability and the full stretching of the network chains. In this paper, the nonaffine model proposed by Davidson and Goulbourne is adopted to characterize the influence of entanglements and finite extensibility of the polymer chains on the mechanical behavior of hydrogels. The Davidson–Goulbourne model only contains three material parameters and has a simpler mathematical form than the Edwards–Vilgis slip-link model, which is the only model that has been adopted to characterize the influence of entanglements on the swelling deformation of polymeric gels so far. Some benchmark problems such as free swelling, constrained swelling, uniaxial tension, equibiaxial tension in the immersed state and uniaxial compression in the isolated state are analyzed, respectively, based on the new constitutive equations. The results show that entanglements as well as chain extensibility have important influences on the mechanical response of hydrogels.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Peppas, N.A., Bures, P., Leobandung, W., Ichikawa, H.: Hydrogels in pharmaceutical formulations. Eur. J. Pharm. Biopharm. 50, 27–46 (2000)CrossRefGoogle Scholar
  2. 2.
    Qiu, Y., Park, K.: Environment-sensitive hydrogels for drug delivery. Adv. Drug. Deliv. Rev. 53, 321–339 (2001)CrossRefGoogle Scholar
  3. 3.
    Peppas, N.A., Hilt, J.Z., Khademhosseini, A., Langer, R.: Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv. Mater. 18, 1345–1360 (2006)CrossRefGoogle Scholar
  4. 4.
    Nguyen, K.T., West, J.L.: Photopolymerizable hydrogels for tissue engineering applications. Biomaterials 23, 4307–4314 (2002)CrossRefGoogle Scholar
  5. 5.
    Cho, E.C., Kim, J.W., Fernandez-Nieves, A., Weitz, D.A.: Highly responsive hydrogel scaffolds formed by three-dimensional organization of microgel nanoparticles. Nano Lett. 8, 168–172 (2008)CrossRefGoogle Scholar
  6. 6.
    Hui, C.Y., Muralidharan, V.: Gel mechanics: a comparison of the theories of Biot and Tanaka, Hocker, and Benedek. J. Chem. Phys. 123, 154905 (2005)CrossRefGoogle Scholar
  7. 7.
    Tanaka, T., Hocker, L.O., Benedek, G.B.: Spectrum of light scattered from a viscoelastic gel. J. Chem. Phys. 59, 5151–5159 (1973)CrossRefGoogle Scholar
  8. 8.
    Li, Y., Tanaka, T.: Kinetics of swelling and shrinking of gels. J. Chem. Phys. 92(2), 1365–1371 (1990)CrossRefGoogle Scholar
  9. 9.
    Bouklas, N., Huang, R.: Swelling kinetics of polymer gels: comparison of linear and nonlinear theories. Soft Mater. 8, 8194–8203 (2012)CrossRefGoogle Scholar
  10. 10.
    Biot, M.A.: General theory of three-dimensional consolidation. J. Appl. Phys. 12, 155–164 (1941)CrossRefMATHGoogle Scholar
  11. 11.
    Gibbs, J.W.: The scientific papers of J. Willard Gibbs. pp. 184, 201, 215 (1878)Google Scholar
  12. 12.
    Flory, P.J.: Thermodynamics of high polymer solutions. J. Chem. Phys. 10, 51–61 (1942)CrossRefGoogle Scholar
  13. 13.
    Huggins, M.L.: Solutions of long chain compounds. J. Chem. Phys. 9(5), 440–440 (1941)CrossRefGoogle Scholar
  14. 14.
    Flory, P.J., Rehner, J.: Statistical mechanics of cross-linked polymer networks II. Swelling. J. Chem. Phys. 11, 521–526 (1943)CrossRefGoogle Scholar
  15. 15.
    Hong, W., Zhao, X.H., Zhou, J.X., Suo, Z.G.: A theory of coupled diffusion and large deformation in polymeric gels. J. Mech. Phys. Solids 56, 1779–1793 (2008)CrossRefMATHGoogle Scholar
  16. 16.
    Wang, D., Wu, M.S.: Analytical solutions for bilayered spherical hydrogel subjected to constant dilatation. Mech. Mater. 58, 12–22 (2013)CrossRefGoogle Scholar
  17. 17.
    Lai, Y., Hu, Y.H.: Unified solution for poroelastic oscillation indentation on gels for spherical, conical and cylindrical indenters. Soft Matter. 13, 852–861 (2017)CrossRefGoogle Scholar
  18. 18.
    Guo, J.X., Luo, J., Xiao, Z.M.: On the opening profile and near tip fields of an interface crack between a polymeric hydrogel and a rigid substrate. Eng. Fract. Mech. 159, 155–173 (2016)CrossRefGoogle Scholar
  19. 19.
    Treloar, R.G.L.: The Physics of Rubber Elasticity. Oxford University Press, Oxford (1975)MATHGoogle Scholar
  20. 20.
    Dolbow, J., Fired, E., Ji, H.: Chemically induced swelling of hydrogels. J. Mech. Phys. Solids 52, 51–84 (2004)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Wineman, A., Rajagopal, K.R.: Shear induced redistribution of fluid within a uniformly swollen nonlinear elastic cylinder. Int. J. Eng. Sci. 30, 1583–1595 (1992)CrossRefMATHGoogle Scholar
  22. 22.
    Deng, H., Pence, T.J.: Equilibrium states of mechanically loaded saturated and unsaturated polymer gels. J. Elast. 99, 39–73 (2010)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Deng, H., Pence, T.J.: Shear induced loss of saturation in a fluid infused swollen hyperelastic cylinder. Int. J. Eng. Sci. 48, 624–646 (2010)CrossRefGoogle Scholar
  24. 24.
    Pieper, B., Dulfer, N., Kilian, H.G., Wolff, S.: Thermodynamics of swelling in unfilled and filler-loaded networks. Colloid Polym. Sci. 270, 29–39 (1992)CrossRefGoogle Scholar
  25. 25.
    Chester, S.A., Anand, L.: A coupled theory of fluid permeation and large deformation. J. Mech. Phys. Solid. 58, 1879–1906 (2010)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Drozdov, A.D., Christiansen, J.deC.: Constitutive equations in finite elasticity of swollen elastomers. Int. J. Solid Stuct. 50, 1494–1504 (2013)Google Scholar
  27. 27.
    Li, B., Chen, H., Li, D.: Effect of solvent diffusion on reactive chromotropic polyelectrolyte gel. Int. J. Appl. Mech. 08, 4401–4412 (2016)Google Scholar
  28. 28.
    Dai, O., Akifumi, K., Nobutada, O.: Using two scaling exponents to describe the mechanical properties of swollen elastomers. J. Mech. Phys. Solids 90, 61–76 (2016)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Tang, S., Glassman, M.J., Li, S., Socrate, S., Olsen, B.D.: Oxiadatively responsive chain extension to entangle engineered protein hydrogels. Macromolecules 47, 791–799 (2014)CrossRefGoogle Scholar
  30. 30.
    Kaliske, M., Heinrich, G.: An extended tube-model for rubber elasticity: statistical-mechanical theory and finite element implementation. Rubber Chem. Technol. 72, 602–632 (1999)CrossRefGoogle Scholar
  31. 31.
    Meissner, B., Matejka, L.: A Langevin-elasticity-theory-based constitutive equation for rubberlike networks and its comparison with biaxial stress–strain data. Part I. Polymer 44, 4599–4610 (2003)CrossRefGoogle Scholar
  32. 32.
    Miehe, C., Göktepe, S., Lulei, F.: A micro-macro approach to rubber-like materials—Part I: the non-affine micro-sphere model of rubber elasticity. J. Mech. Phys. Solids 52, 2617–2660 (2004)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Kroon, M.: An 8-chain model for rubber-like materials accounting for non-affine chain deformations and topological constraints. J. Elast. 102(2), 99–116 (2010)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Edwards, S.F., Vilgis, T.A.: The effect of entanglements in rubber elasticity. Polymer 27, 483–492 (1986)CrossRefGoogle Scholar
  35. 35.
    Davidson, J.D., Goulbourne, N.: A nonaffine network model for elastomers undergoing finite deformations. J. Mech. Phys. Solids 61, 1784–1797 (2013)CrossRefGoogle Scholar
  36. 36.
    Yan, H.X., Jin, B.: Influernce of microstructural parameters on mechanical behavior of polymer gels. Int. J. Solids Struct. 49, 436–444 (2012)CrossRefGoogle Scholar
  37. 37.
    Yan, H.X., Jin, B., Gao, S.H., Chen, L.W.: Equilibrium swelling and electrochemistry of polyampholytic pH-sensitive hydrogel. Int. J. Solids Struct. 51, 4149–4156 (2014)CrossRefGoogle Scholar
  38. 38.
    Yang, Q.S., Ma, L.H., Shang, J.J.: The chemo-mechanical coupling behavior of hydrogels incorporating entanglements of polymer chains. Int. J. Solids Struct. 50, 2437–2448 (2013)CrossRefGoogle Scholar
  39. 39.
    Rubinstein, M., Panyukov, S.: Elasticity of polymer networks. Macromolecules 35, 6670–6686 (2002)CrossRefGoogle Scholar
  40. 40.
    Arruda, E.M., Boyce, M.C.: A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. J. Mech. Phys. Solids 41(2), 389–412 (1993)CrossRefMATHGoogle Scholar
  41. 41.
    Li, Y., Tang, S., Kröger, M., Liu, W.K.: Molecular simulation guided constitutive modeling on finite strain viscoelasticity of elastomers. J. Mech. Phys. Solids. 88, 204–226 (2016)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Hong, W., Liu, Z., Suo, Z.G.: Inhomogeneous swelling of a gel in equilibrium with a solvent and mechanical load. Int. J. Solids Struct. 46, 3282–3289 (2009)CrossRefMATHGoogle Scholar
  43. 43.
    Bischoff, J.E., Arruda, E.M., Grosh, K.: A new constitutive model for the compressibility of elastomers at finite deformation. Rubber Chem. Technol. 74, 541–559 (2001)CrossRefGoogle Scholar
  44. 44.
    Gaylord, R.J., Douglas, J.F.: Rubber elasticity: a scaling approach. Polym. Bull. 18(4), 347–354 (1987)CrossRefGoogle Scholar
  45. 45.
    Gaylord, R.J., Douglas, J.F.: The localization model of rubber elasticity II. Polym. Bull. 23(5), 529–533 (1990)CrossRefGoogle Scholar
  46. 46.
    Douglas, J.F.: The localization model of rubber elasticity. Macromol. Symp. 291–292(1), 230–238 (2010)CrossRefGoogle Scholar
  47. 47.
    Douglas, J.F.: Influence of chain structure and swelling on the elasticity of rubber materials: localization model description. Macromol. Symp. 329(1), 87–100 (2013)CrossRefGoogle Scholar
  48. 48.
    During, C.J., Morman, K.N.: Nonlinear swelling of the polymer gels. J. Chem. Phys. 98, 4275–4293 (1993)CrossRefGoogle Scholar
  49. 49.
    Lou, Y., Robisson, A., Cai, S., Suo, Z.: Swellable elastomers under constraint. J. Appl. Phys. 112, 1059–590 (2012)CrossRefGoogle Scholar
  50. 50.
    Chester, S.A., Anand, L.: A thermo-mechanically coupled theory for fluid permeation in elastomeric materials: application to thermally responsive gels. J. Mech. Phys. Solid. 59, 1978–2006 (2011)MathSciNetCrossRefMATHGoogle Scholar
  51. 51.
    Bouklas, N., Landis, C.M., Huang, R.: A nonlinear, transient finite element method for coupled solvent diffusion and large deformation of hydrogels. J. Mech. Phys. Solid. 79, 21–43 (2015)MathSciNetCrossRefMATHGoogle Scholar
  52. 52.
    Cai, S., Suo, Z.: Equations of state for ideal elastomeric gels. Eur. Phys. Lett. 97, 34009 (2012)CrossRefGoogle Scholar
  53. 53.
    Chen, Z., Cohen, C., Escobedo, F.A.: Monte Carlo simulation of the effect of entanglements on the swelling and deformation behavior of end-linked polymeric networks. Macromolecules 35(8), 3296–3305 (2002)CrossRefGoogle Scholar
  54. 54.
    Drozdov, A.D., Christiansen, J.deC.: Stress–strain relations for hydrogels under multiaxial deformation. Int. J. Solids Struct. 50, 3570–3585 (2013)Google Scholar
  55. 55.
    Bitoh, Y., Akuzawa, N., Urayama, K., Takigawa, T., Kidowaki, M., Ito, K.: Peculiar nonlinear elasticity of polyrotaxane gels with movable cross-links revealed by multiaxial stretching. Macromolecules 44, 8661–8667 (2011)CrossRefGoogle Scholar
  56. 56.
    Zhang, H.: Strain–stress relation in macromolecular microsphere composite hydrogel. Appl. Math. Mech. (English Ed.) 37, 1539–1550 (2016)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria 2017

Authors and Affiliations

  1. 1.Department of MechanicsHuazhong University of Science and TechnologyWuhanPeople’s Republic of China
  2. 2.Hubei Key Laboratory for Engineering Structural Analysis and Safety AssessmentWuhanPeople’s Republic of China

Personalised recommendations