Advertisement

Rechargeable lithium-ion system based on lithium-vanadium(III) phosphate and lithium titanate and the peculiarity of it functioning

  • Arseni V. UshakovEmail author
  • Semen V. Makhov
  • Nelly A. Gridina
  • Aleksandr V. Ivanishchev
  • Irina M. Gamayunova
Original Paper
  • 6 Downloads

Abstract

We propose a new electrochemical system based on a negative electrode based on lithium pentatitanate, a positive electrode based on the lithium-vanadium(III) phosphate, 0.67 mol dm−3 lithium chlorate(VII) solution in a mixture of propylene carbonate and 1,2-dimethoxyethane as an electrolyte and consider the peculiarities of its functioning. The paper cites the arguments and experimental data disclosing the influence of the products of the secondary oxidation of 1,2-dimethoxyethane at the Li3V2(PO4)3-electrode on the functional behavior of the Li4Ti5O12-electrode as the main reason for the observed decrease in the characteristics of the battery prototypes and suggests the ways to solve this problem.

Graphical abstract

Keywords

Electrochemical system Lithium-ion battery Insertion compounds Mass spectroscopy Oxidations Monoglyme 

Notes

Acknowledgements

We are grateful to Ph.D. O.N. Yurasov for analysis by chromatography-mass spectrometry, to the Russian Science Foundation (Project no. 15-13-10006) and to the Russian Foundation for Basic Research (Project no. 18-53-45004) for financial support.

References

  1. 1.
    Zhao B, Ran R, Liu M, Shao Z (2015) Mater Sci Eng, R 98:1CrossRefGoogle Scholar
  2. 2.
    Rui X, Yan Q, Skyllas-Kazacos M, Lim TM (2014) J Power Sources 258:19CrossRefGoogle Scholar
  3. 3.
    Liu C, Massé R, Nan X, Cao G (2016) Energy Storage Mater 4:15CrossRefGoogle Scholar
  4. 4.
    Ushakov AV, Churikov AV, Ivanishchev AV, Makhov SV, Gamayunova IM (2016) In: Navratil T, Fojta M, Schwarzova K (eds), XXXVI Moderni elektrochemicke metody (Proceedings of 36th International Conference on Modern Electrochemical Methods), Jetrichovice, Czech Republic, 23-27 may, 2016. Lenka Srsenova-Best Servis, Czech RepublicGoogle Scholar
  5. 5.
    Ivanishchev AV, Churikov AV, Ushakov AV (2014) Electrochim Acta 122:187CrossRefGoogle Scholar
  6. 6.
    Senna M, Fabián M, Kavan L, Zukalová M, Briančin J, Turianicová E, Bottke P, Wilkening M, Šepelák V (2016) J Solid State Electrochem 20:2673CrossRefGoogle Scholar
  7. 7.
    Zukalová M, Fabián M, Klusáčková M, Klementová M, Lásková BP, Danková Z, Senna M, Kavan L (2018) Electrochim Acta 265:480CrossRefGoogle Scholar
  8. 8.
    Doughty D, Roth EP (2012) Electrochem Soc Interface 21:37CrossRefGoogle Scholar
  9. 9.
    Hautier G, Jain A, Ong SP, Kang B, Moore C, Doe R, Ceder G (2011) Chem Mater 23:3495CrossRefGoogle Scholar
  10. 10.
    Kavan L (2014) J Solid State Electrochem 18:2297CrossRefGoogle Scholar
  11. 11.
    Opra DP, Gnedenkov SV, Sinebryukhov SL, Voit EI, Sokolov AA, Ustinov AY, Zheleznov VV (2018) Prog Nat Sci: Mater Int 28:542CrossRefGoogle Scholar
  12. 12.
    Gnedenkov SV, Sinebryukhov SL, Zheleznov VV, Opra DP, Voit EI, Modin EB, Sokolov AA, Ustinov AY, Sergienko VI (2018) R Soc Open Sci 5:171811CrossRefGoogle Scholar
  13. 13.
    Wilkening M, Iwaniak W, Heine J, Epp V, Kleinert A, Behrens M, Nuspl G, Bensch W, Heitjans P (2007) Phys Chem Chem Phys 9:6199CrossRefGoogle Scholar
  14. 14.
    Takami N, Hoshina K, Inagaki H (2011) J Electrochem Soc 158:A725CrossRefGoogle Scholar
  15. 15.
    Kamata M, Esaka T, Kodama N, Fujine S, Yoneda K, Kanda K (1996) J Electrochem Soc 143:1866CrossRefGoogle Scholar
  16. 16.
    Takai S, Kamata M, Fujine S, Yoneda K, Kanda K, Esaka T (1999) Solid State Ionics 123:165CrossRefGoogle Scholar
  17. 17.
    Fehr KT, Holzapfel M, Laumann A, Schmidbauer E (2010) Solid State Ionics 181:1111CrossRefGoogle Scholar
  18. 18.
    Leonidov IA, Leonidova ON, Perelyaeva LA, Samigullina RF, Kovyazina SA, Patrakeev MV (2003) Phys Solid State 45:2183CrossRefGoogle Scholar
  19. 19.
    Vijayakumar M, Kerisit S, Rosso KM, Burton SD, Sears JA, Yang Z, Graff GL, Liu J, Hu J (2011) J Power Sources 196:2211CrossRefGoogle Scholar
  20. 20.
    Ohzuku T, Ueda A, Yamamota N (1995) J Electrochem Soc 142:1431CrossRefGoogle Scholar
  21. 21.
    Wagemaker M, Simon D, Kelder E, Schoonman J, Ringpfeil C, Haake U, Lützenkirchen-Hecht D, Frahm R, Mulder F (2006) Adv Mater 18:3169CrossRefGoogle Scholar
  22. 22.
    Zhong Z, Ouyang C, Shi S, Lei M (2008) ChemPhysChem 9:2104CrossRefGoogle Scholar
  23. 23.
    Jiang S, Zhao B, Chen Y, Cai R, Shao Z (2013) J Power Sources 238:356CrossRefGoogle Scholar
  24. 24.
    Han C, He YB, Liu M, Li B, Yang QH, Wong CP, Kang F (2017) J Mater Chem A 5:6368CrossRefGoogle Scholar
  25. 25.
    Sato M, Ohkawa H, Yoshida K, Saito M, Uematsu K, Toda K (2000) Solid State Ionics 135:137CrossRefGoogle Scholar
  26. 26.
    Huang H, Yin SC, Kerr T, Taylor N, Nazar LF (2002) Adv Mater 14:1525CrossRefGoogle Scholar
  27. 27.
    Saïdi MY, Barker J, Huang H, Swoyer JL, Adamson G (2002) Electrochem Solid-State Lett 5:A149CrossRefGoogle Scholar
  28. 28.
    Wang L, Li X, Tang Z, Zhang X (2012) Electrochem Commun 22:73CrossRefGoogle Scholar
  29. 29.
    Yi TF, Shu J, Zhu YR, Zhou AN, Zhu RS (2009) Electrochem Commun 11:91CrossRefGoogle Scholar
  30. 30.
    Mao WF, Zhang NN, Tang ZY, Feng YQ, Ma CX (2014) J Alloys Compd 588:25CrossRefGoogle Scholar
  31. 31.
    Liu C, Wang S, Zhang C, Fu H, Nan X, Yang Y, Cao G (2016) Energy Storage Mater 5:93CrossRefGoogle Scholar
  32. 32.
    Saroha R, Panwar AK, Jain A, Singh J, Verma S (2017) Ionics 23:2631CrossRefGoogle Scholar
  33. 33.
    Yang CC, Hu HC, Lin SJ, Chien WC (2014) J Power Sources 258:424CrossRefGoogle Scholar
  34. 34.
    Kelly RJ (1996) Chem Health Saf 3:28Google Scholar
  35. 35.
    Denisov ET (1999) Kinet Catal 40:217Google Scholar
  36. 36.
    Ingold KU (1969) Acc Chem Res 2:1CrossRefGoogle Scholar
  37. 37.
    Carboni M, Marrani AG, Spezia R, Brutti S (2016) Chem Eur J 22:17188CrossRefGoogle Scholar
  38. 38.
    Sergienko VS (2004) Crystallogr Rep 49:907CrossRefGoogle Scholar
  39. 39.
    Kholdeeva OA, Trubitsina TA, Maksimovskaya RI, Golovin AV, Neiwert WA, Kolesov BA, López X, Poblet JM (2004) Inorg Chem 43:2284CrossRefGoogle Scholar
  40. 40.
    Wang GC, Sung HHY, Williams ID, Leung WH (2012) Inorg Chem 51:3640CrossRefGoogle Scholar
  41. 41.
    Spanó E, Tabacchi G, Gamba A, Fois E (2006) J Phys Chem B 110:21651CrossRefGoogle Scholar
  42. 42.
    Yudanov IV, Gisdakis P, Di Valentin C, Rösch N (1999) Eur J Inorg Chem 1999:2135CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • Arseni V. Ushakov
    • 1
    Email author
  • Semen V. Makhov
    • 1
  • Nelly A. Gridina
    • 1
  • Aleksandr V. Ivanishchev
    • 1
  • Irina M. Gamayunova
    • 1
  1. 1.Physical Chemistry Division, Institute of ChemistrySaratov State UniversitySaratovRussia

Personalised recommendations