Advertisement

Phospholipid-modified carbon fiber brush electrode for the detection of dopamine and 3,4-dihydroxyphenylacetic acid

  • Radek Jerga
  • Veronika Müllerová
  • Jana Štěpánková
  • Petr Barták
  • Hana Tomková
  • Jan Rozsypal
  • Jana SkopalováEmail author
Original Paper
  • 10 Downloads

Abstract

Different procedures for modification of carbon fiber brush electrode (CFBE) with phospholipids were investigated using cyclic voltammetry and electrochemical impedance spectroscopy. Simple immersion of the preanodized electrode into hexane solution of asolectin (a mixture of soybean phospholipids) followed by formation of the phospholipid layer in NaCl solution was the most effective procedure. Phospholipid layer-modified electrode (PL-CFBE) was applied to detect dopamine and its metabolite, 3,4 dihydroxyphenylacetic acid, using differential pulse and square-wave voltammetry in phosphate buffer solution of pH 6.5. Accumulation of dopamine, supported by electrostatic interactions between positively charged amino group and negatively charged phosphate moiety of the layer, enhanced sensitivity of PL-CFBE compared to bare CFBE. On the contrary, repulsive interaction between 3,4 dihydroxyphenylacetate anion and negatively charged phosphate moiety of the layer suppressed PL-CFBE sensitivity, measured as a slope of calibration dependence.

Graphical abstract

Keywords

Asolectin Phospholipids Voltammetry Impedance spectroscopy 

Notes

Acknowledgements

This work was supported by the Grant projects of Czech Science Foundation (17–05387S) and Palacký University in Olomouc (IGA_PrF_2018_027).

References

  1. 1.
    Lombard J (2014) Biol Direct 9:32CrossRefGoogle Scholar
  2. 2.
    Watson H (2015) Essays Biochem 59:43CrossRefGoogle Scholar
  3. 3.
    Tomkova H, Sokolova R, Opletal T, Kucerova P, Kucera L, Souckova J, Skopalova J, Bartak P (2018) J Electroanal Chem 821:33CrossRefGoogle Scholar
  4. 4.
    Richter RP, Brisson A (2003) Langmuir 19:1632CrossRefGoogle Scholar
  5. 5.
    Navratil T, Novakova K, Josypcuk B, Sokolova R, Sestakova I (2016) Monatsh Chem 147:165CrossRefGoogle Scholar
  6. 6.
    Kocabova J, Kolivoska V, Gal M, Sokolova R (2018) J Electroanal Chem 821:67CrossRefGoogle Scholar
  7. 7.
    Nikolelis DP, Theoharis G (2003) Bioelectrochemistry 59:107CrossRefGoogle Scholar
  8. 8.
    Nikolelis DP, Raftopoulou G, Chatzigeorgiou P, Nikoleli GP, Viras K (2008) Sens Actuators B 130:577CrossRefGoogle Scholar
  9. 9.
    Seddon AM, Casey D, Law RV, Gee A, Templer RH, Ces O (2009) Chem Soc Rev 38:2509CrossRefGoogle Scholar
  10. 10.
    Nikolelis DP, Petropoulou SSE, Pergel E, Toth K (2002) Electroanalysis 14:783CrossRefGoogle Scholar
  11. 11.
    Chen H, Zheng Y, Jiang JH, Wu HL, Shen GL, Yu RQ (2008) Biosens Bioelectron 24:684CrossRefGoogle Scholar
  12. 12.
    Marques JT, de Almeida RFM, Viana AS (2014) Electrochim Acta 126:139CrossRefGoogle Scholar
  13. 13.
    Fritzen-Garcia MB, Zoldan VC, Oliveira IRWZ, Soldir V, Pasa AA, Creczynski-Pasa TB (2013) Biotechnol Bioeng 110:374CrossRefGoogle Scholar
  14. 14.
    Abbasi F, Leitch JJ, Su Z, Szymanski G, Lipkowski J (2018) Electrochim Acta 267:195CrossRefGoogle Scholar
  15. 15.
    Gabriunaite I, Valiuniene A, Valincius G (2018) Electrochim Acta 283:1351CrossRefGoogle Scholar
  16. 16.
    Lebegue E, Smida H, Flinois T, Vie V, Lagrost C, Barriere F (2018) J Electroanal Chem 808:286CrossRefGoogle Scholar
  17. 17.
    Svecova H, Souckova J, Pyszkova M, Svitkova J, Labuda J, Skopalova J, Bartak P (2014) Eur J Lipid Sci Technol 116:1247CrossRefGoogle Scholar
  18. 18.
    Sakaguchi N, Kimura Y, Hirano-Iwata A, Ogino T (2017) J Phys Chem B 121:4474CrossRefGoogle Scholar
  19. 19.
    Andersson J, Knobloch JJ, Perkins MV, Holt SA, Köper I (2017) Langmuir 33:4444CrossRefGoogle Scholar
  20. 20.
    Ayano G (2016) J Ment Disord Treat 2:120CrossRefGoogle Scholar
  21. 21.
    Jaber M, Robinson SW, Missale C, Caron MG (1996) Neuropharmacology 35:1503CrossRefGoogle Scholar
  22. 22.
    Florang VR, Rees JN, Brogden NK, Anderson DG, Hurley TD, Doorn JA (2007) NeuroToxicology 28:76CrossRefGoogle Scholar
  23. 23.
    Zachek MK, Hermans A, Wightman RM, McCarty GS (2008) J Electroanal Chem 614:113CrossRefGoogle Scholar
  24. 24.
    Taylor IM, Robbins EM, Catt KA, Cody PA, Happe CL, Cui XT (2017) Biosens Bioelectron 89:400CrossRefGoogle Scholar
  25. 25.
    Vallone D, Picetti R, Borrelli E (2000) Neurosci Biobehav Rev 24:125CrossRefGoogle Scholar
  26. 26.
    Perrin DD (1965) Dissociation constants of organic bases in aqueous solution. IUPAC Chemical Data Series, no 12. Buttersworth, LondonGoogle Scholar
  27. 27.
    Jodko-Piorecka K, Litwinienko G (2013) ACS Chem Neurosci 4:1114CrossRefGoogle Scholar
  28. 28.
    Matam Y, Ray BD, Petrache HI (2016) Neurosci Lett 618:104CrossRefGoogle Scholar
  29. 29.
    Skopalova J, Bartak P, Bednar P, Tomkova H, Ingr T, Lorencova I, Kucerova P, Papousek R, Borovcova L, Lemr K (2018) Anal Chim Acta 999:60CrossRefGoogle Scholar
  30. 30.
    Součková J, Skopalová J, Švecová J, Čáp L, Bednář P, Barták P (2011) Acta Univ Palacki Olomuc Fac Rer Nat Chemica 48:8Google Scholar
  31. 31.
    Vernooij EAAM, Kettenes – van den Bosch JJ, Underberg WJM, Crommelin DJA (2002) J Control Release 79:299Google Scholar
  32. 32.
    Guit M, Underberg WJM, Crommelin DJA (1993) J Pharm Sci 82:362CrossRefGoogle Scholar
  33. 33.
    Zhang F, Dryhurst G (1993) Bioorg Chem 21:392CrossRefGoogle Scholar
  34. 34.
    Fazary AE, Ju YH (2008) J Solution Chem 37:1305CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Analytical Chemistry, Faculty of SciencePalacký University in OlomoucOlomoucCzech Republic

Personalised recommendations