Advertisement

Isotachophoretic determination of triethanolamine in cosmetic products

  • Michaela JanečkováEmail author
  • Martin Bartoš
  • Jana Lenčová
Short Communication
  • 1 Downloads

Abstract

In this article, determination of triethanolamine in cosmetic products by capillary isotachophoresis is presented. Because of EU which regulates maximal content of triethanolamine in cosmetics, it is important to control quality of cosmetic products. In contrast with chromatographic methods, the developed method is of low cost and samples can be analyzed without any pretreatment. Optimal conditions represented by electrolyte system for separation of triethanolamine as cation, 10 mmol/dm3 sodium acetate, 0.05% (m/m) hydroxyethyl cellulose (HEC), with acetic acid (leading electrolyte of pH 4.6) and 10 mmol/dm3 acetic acid (terminating electrolyte) were chosen. In this electrolyte system, the following analytical parameters were achieved: limit of detection 0.6 µmol/dm3, limit of determination 1.8 µmol/dm3, repeatability 3.5%, recovery 96.0 ± 3.6%, linearity range 10–400 µmol/dm3. The developed method shows potential applicability on analysis of triethanolamine in any cosmetic products.

Graphical abstract

Keywords

Amino alcohols Electrophoresis Surfactants 

References

  1. 1.
    PubChem Open Chemistry Database. National Library of Medicine, Rockville. https://pubchem.ncbi.nlm.nih.gov/compound/7618. Accessed 2 Oct 2018
  2. 2.
    Frauenkron M, Melder JP, Ruider G, Rossbacher R, Höke H (2012) Ullmann’s encyclopedia of industrial chemistry. Wiley, WeinheimGoogle Scholar
  3. 3.
    Zhu S, Heppenstall-Butler M, Butler MF, Pudney PDA, Ferdinando D, Mutch KJ (2005) J Phys Chem B 109:11753CrossRefGoogle Scholar
  4. 4.
    Shin KO, Lee YM (2016) Arch Pharm Res 39:66CrossRefGoogle Scholar
  5. 5.
    Lessmann H, Uter W, Schnuch A, Geier J (2009) Contact Dermatitis 60:243CrossRefGoogle Scholar
  6. 6.
    Nordic council of ministers (1993) Health effects of selected chemicals. Kjeld Brandt, CopenhagenGoogle Scholar
  7. 7.
    Brydia LE, Persinger HE (1967) Anal Chem 39:1318CrossRefGoogle Scholar
  8. 8.
    Piekos R, Kobylczyk K, Grzybowski J (1967) Anal Chem 47:1157CrossRefGoogle Scholar
  9. 9.
    Giachetti C (1998) Chromatographia 48:443CrossRefGoogle Scholar
  10. 10.
    Campo P, Suidan MT, Chai Y, Davis J (2010) Talanta 80:1110CrossRefGoogle Scholar
  11. 11.
    Campbell LD, Carson S, Van Bramer D (1991) J Chromatogr A 546:381CrossRefGoogle Scholar
  12. 12.
    Worsfold PJ, Yan B (1991) Anal Chim Acta 246:447CrossRefGoogle Scholar
  13. 13.
    Bouyoucos SA, Melcher RG (1986) Am Ind Hyg Assoc J 47:185CrossRefGoogle Scholar
  14. 14.
    Yilmaz VT, Menek N, Odabasoǧlu M (1993) Cem Concr Res 23:603CrossRefGoogle Scholar
  15. 15.
    Sollenberg J (1997) Proc Contr Qual 10:313Google Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • Michaela Janečková
    • 1
    Email author
  • Martin Bartoš
    • 1
  • Jana Lenčová
    • 1
  1. 1.Institute of Analytical ChemistryUniversity of PardubicePardubiceCzech Republic

Personalised recommendations