Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Computation-led design of pollutant gas sensors with bare and carbon nanotube supported rhodium alloys

  • 40 Accesses

Abstract

Quantum chemical study has been performed on finite-sized bi-metallic Rh3M alloys, M = Ag, Ir, Pd, Pt, Au, derived from magic cluster, Rh4. Bond length of C–O and N–O are noticed to be elongated in the presence of rhodium alloy clusters. CO2 and NO2 gases are found to be highly adsorbed on Rh3M clusters, which is confirmed by stretching frequency of C–O and N–O. DFT evaluated dipole moment and electronic charge redistribution suggests the sensing capability of CO2 and NO2 gases by Rh3M clusters which is further confirmed by the calculated HOMO–LUMO gap. Mixed rhodium alloy clusters supported on single-wall carbon nanotube (SWCNT) exhibits much higher ability to sense CO2 and NO2. On the other hand, SWCNT@Rh3M shows higher catalytic activity for the activation of CO2 and NO2 in comparison to bare Rh3M because of the higher electronic charge redistribution in the case of SWCNT@Rh3M. In case of SWCNT-supported gas adsorbed clusters, p electrons play a major role in bonding.

Graphic abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    Elkind JL, Weiss FD, Alford JM, Laaksonen RT, Smalley RE (1998) J Chem Phys 88:5215

  2. 2.

    Sun S, Murray CB, Weller D, Folks L, Moser A (2000) Science 287:1989

  3. 3.

    Chung SH, Hoffmann A, Guslienko K, Bader SD, Liu C, Kay B, Makowski L, Chen L (2005) J Appl Phys 97:10R101

  4. 4.

    Nam JM, Thaxton CS, Mirkin CA (2003) Science 301:1884

  5. 5.

    Tsang SC, Yu CH, Gao X, Tam K (2006) J Phys Chem B 110:16914

  6. 6.

    Freyschlag CG, Madix RJ (2011) Mater Today 14:134

  7. 7.

    Cooper J, Beecham J (2013) Platin Met Rev 57:281

  8. 8.

    Rainer DR, Koranne M, Vesecky SM, Goodman DW (1997) J Phys Chem B 101:10769

  9. 9.

    Piccolo L, Henry CR (2001) J Mol Catal A Chem 167:181

  10. 10.

    Yin Z, Li C, Su Y, Liu Y, Wang Y, Chen G (2012) Chem Phys 395:108

  11. 11.

    Dutta A, Mondal P (2016) RSC Adv 6:6946

  12. 12.

    Dutta A, Mondal P (2017) J Clust Sci 28:2601

  13. 13.

    Dutta A, Mondal P (2018) New J Chem 42:1121

  14. 14.

    Jimenez-Cadena G, Riu J, Rius FX (2007) Analyst 132:1083

  15. 15.

    Fine GF, Cavanagh LM, Afonja A, Binions R (2010) Sensors 10:5469

  16. 16.

    Liu X, Cheng S, Liu H, Hu S, Zhang D, Ning H (2012) Sensors 12:9635

  17. 17.

    Chiu SW, Tang KT (2013) Sensors 13:14214

  18. 18.

    Castleman AW, Jena P (2006) Proc Natl Acad Sci 103:1055

  19. 19.

    Suematsu K, Shin Y, Hua Z, Yoshida K, Yuasa M, Kida T, Shimanoe K (2014) ACS Appl Mater Interfaces 6:5319

  20. 20.

    Mathew A, Pradeep T (2014) Part Part Syst Charact 31:1017

  21. 21.

    Soltani A, Raz SG, Taghartapeh MR, Moradi AV, Mehrabian RZ (2013) Comput Mater Sci 79:795

  22. 22.

    Beheshtian J, Peyghan AA, Bagheri Z (2012) Comput Mater Sci 62:71

  23. 23.

    Olah GA, Goeppert A, Prakash GKS (2009) Beyond oil and gas: the methanol economy. Wiley, Weinheim

  24. 24.

    Nielsen M, Alberico E, Baumann W, Drexler HJ, Junge H, Gladiali S, Beller M (2013) Nature 495:85

  25. 25.

    Yu KMK, Tong W, West A, Cheung K, Li T, Smith G, Tsang SCE (2012) Nat Commun 3:1230

  26. 26.

    Zhang Q, Qiu Z, Chung KF, Huang SK (2015) J Thorac Dis 7:14

  27. 27.

    Sadaoka Y, Jones TA, Revell GS, Göpel W (1990) J Mater Sci 25:5257

  28. 28.

    Korolkoff NO (1989) Solid State Technol 32:49

  29. 29.

    Sberveglieri G, Groppelli S, Nelli P (1991) Sens Actuators B Chem 4:457

  30. 30.

    Grilli ML, Di Bartolomeo E, Traversa E (2001) J Electrochem Soc 148:H98

  31. 31.

    Baei MT, Soltani AR, Moradi AV, Lemeski ET (2011) Comp Theoret Chem 970:30

  32. 32.

    Beheshtian J, Peyghan AA, Bagheri Z (2012) Appl Surf Sci 259:631

  33. 33.

    Beheshtian J, Peyghan AA, Bagheri Z, Kamfiroozi M (2012) S Struct Chem 23:1567

  34. 34.

    Beheshtian J, Baei MT, Peyghan AA, Bagheri Z (2012) J Mol Model 18:4745

  35. 35.

    Beheshtian J, Peyghan AA, Bagheri Z (2012) Sens Actuators B Chem 171:846

  36. 36.

    Breza M (2006) J Mol Struct (Theochem) 767:159

  37. 37.

    Kong J, Franklin NR, Zhou C, Chapline MG, Peng S, Cho K, Dai H (2000) Science 287:622

  38. 38.

    Collins PG, Bradley K, Ishigami M, Zettl DA (2000) Science 287:1801

  39. 39.

    Jhi SH, Louie SG, Cohen ML (2000) Phys Rev Lett 85:1710

  40. 40.

    Peng S, Cho K (2000) Nanotechnology 11:57

  41. 41.

    Valentini L, Armentano I, Kenny JM, Cantalini C, Lozzi L, Santucci S (2003) Appl Phys Lett 82:961

  42. 42.

    Zurek E, Autschbach J (2004) J Am Chem Soc 126:13079

  43. 43.

    Cinke M, Li J, Bauschlicher CW Jr, Ricca A, Meyyappan M (2003) Chem Phys Lett 376:761

  44. 44.

    Yu CH, Huang CH, Tan CS (2012) Aerosol Air Qual Res 12:745

  45. 45.

    Khalili S, Ghoreyshi AA, Jahanshahi M (2013) Chem Ind Chem Eng Q 19:153

  46. 46.

    Larijani MM, Safa S (2014) Acta Phys Pol A 126:732

  47. 47.

    Rossetti I, Ramis G, Gallo A, Di Michele A (2015) Int J Hydrogen Energy 40:7609

  48. 48.

    Ha NN, Ha NTT (2015) J Mol Model 21:322

  49. 49.

    Sakata Y, Uddin MA, Muto A, Imaoka M (1997) Micropor Mat 9:183

  50. 50.

    Liang XL, Xie JR, Liu ZM (2015) Catal Lett 145:1138

  51. 51.

    Kong H, Li HY, Lin GD, Zhang HB (2011) Catal Lett 141:886

  52. 52.

    Sharafeldin IM, Allam NK (2017) New J Chem 41:14936

  53. 53.

    Espinosa EH, Ionescu R, Chambon B, Bedis G, Sotte E, Bittencourt C, Llobet E (2007) Sens Actuators B Chem 127:137

  54. 54.

    Ionescu R, Espinosa EH, Leghrib R, Felten A, Pireaux JJ, Erni R, Llobet E (2008) Sens Actuators B Chem 13:174

  55. 55.

    Herzberg G (1966) Molecular spectra and molecular structure III: electronic spectra and electronic structure of polyatomic molecules, vol 26. Van Nostrand, New York, p 1

  56. 56.

    Huo PY, Zhang XR, Yu ZC, Gao K, Zhu J (2018) Surf Rev Lett 25:1950008

  57. 57.

    Saputro AG, Agusta MK, Wungu TDK, Rusydi F, Dipojono HK (2016) J Phys Conf Ser 739:012083

  58. 58.

    Sverdlov LM, Kraĭnov EP (1974) Vibrational spectra of polyatomic molecules. Wiley, New York

  59. 59.

    Shimanouchi T (1972) Tables of molecular vibrational frequencies consolidated. NSRDS-NBS 39: US Government Printing Office, Washington

  60. 60.

    Tkatchenko A, Scheffler M (2009) Phys Rev Lett 102:073005

  61. 61.

    Chang CC, Ho JJ (2015) Phys Chem Chem Phys 17:11028

  62. 62.

    Nguyen TTH, Le Minh C, Nguyen NH (2017) Comput Theor Chem 1100:46

  63. 63.

    Delley B (2000) J Chem Phys 113:7756

  64. 64.

    Delley B (1990) J Chem Phys 92:508

  65. 65.

    Becke AD (1988) Phys Rev A 38:3098

  66. 66.

    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

  67. 67.

    Delley B, Ellis DE (1982) J Chem Phys 76:1949

  68. 68.

    Delley B (1998) Int J Quantum Chem 69:423

  69. 69.

    Pulay P (1980) Chem Phys Lett 73:393

  70. 70.

    Pulay P (1982) J Comput Chem 3:556

Download references

Acknowledgements

Authors thank Department of Science and Technology (DST), New Delhi, India for financial support (SB/EMEQ-214 /2013).

Author information

Correspondence to Paritosh Mondal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dutta, A., Pradhan, A.K., Qi, F. et al. Computation-led design of pollutant gas sensors with bare and carbon nanotube supported rhodium alloys. Monatsh Chem 151, 159–171 (2020). https://doi.org/10.1007/s00706-019-02539-8

Download citation

Keywords

  • Rhodium
  • Alloy
  • CO2
  • NO2
  • SWCNT
  • DFT