Substituent effects on stability, MEP, NBO analysis, and reactivity of 2,2,9,9-tetrahalosilacyclonona-3,5,7-trienylidenes, at density functional theory

  • 49 Accesses


Cyclonona-3,5,7-trienylidene appears as boat-shaped transition state for having a negative force constant, while its singlet state exhibits less stability than the corresponding triplet state. Succeeding the quest for the largest unsaturated stable carbene-like species, theoretical investigations coupled with suitable isodesmic reactions are used to examine the effects of α,αʹ-tetrahalo groups on the thermodynamic along with kinetic viabilities of nine-membered cyclic silylenes. All the singlet and triplet silylenes appear as boat-shaped minima for having positive force constants on their potential energy surfaces and singlet states emerge as ground state, exhibiting more stability than their corresponding triplet states. The order of stability estimated by singlet (S)–triplet (T) energy separation (ΔES–T = ET − ES) emerges as α,αʹ-tetrahydrocarbene < α,αʹ-tetrahydrosilylene < α,αʹ-tetrafluorosilylene < α,αʹ-tetraiodosilylene < α,αʹ-tetrachlorosilylene < α,αʹ-tetrabromosilylene. This research specifies band gap (ΔEHOMO–LUMO) of scrutinized silylenes with this order. Hence, singlet 2,2,9,9-tetrabromosilacyclonona-3,5,7-trienylidene exists as the most stable species. From both thermodynamic and kinetic points of view, this species is more stable than synthesized silylene by Kira. It shows the highest heat of dehydrogenation through isodesmic reaction. The NBO analysis provides significant evidences for the stability of it through positive hyperconjugation, negative hyperconjugation, as well as mesomeric effects.

Graphic abstract

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    Kassaee MZ, Zandi H, Haerizade BN, Ghambarian M (2012) Comput Theor Chem 1001:39

  2. 2.

    Momeni MR, Shakib FA (2011) Organomet 30:5027

  3. 3.

    Ayoubi-Chianeh M, Kassaee MZ, Ashenagar S, Cummings PT (2019) J Phys Org Chem 32:e3956

  4. 4.

    Brück A, Gallego D, Wang W, Irran E, Driess M, Hartwig JF (2012) Angew Chem Int Ed 51:11478

  5. 5.

    Li J, Merkel S, Henn J, Meindl K, Döring A, Roesky HW, Ghadwal RS, Stalke D (2010) Inorg Chem 49:775

  6. 6.

    Yang W, Fu H, Wang H, Chen M, Ding Y, Roesky HW, Jana A (2009) Inorg Chem 48:5058

  7. 7.

    Yamada T, Mawatari A, Tanabe M, Osakada K, Tanase T (2009) Angew Chem 121:576

  8. 8.

    Blom B, Enthaler S, Inoue S, Irran E, Driess M (2013) J Am Chem Soc 135:6703

  9. 9.

    Tan G, Blom B, Gallego D, Driess M (2013) Organometallics 33:363

  10. 10.

    Blom B, Stoelzel M, Driess M (2013) Chem Eur J 19:40

  11. 11.

    Stoelzel M, Präsang C, Blom B, Driess M (2013) Aust J Chem 66:1163

  12. 12.

    Protchenko AV, Birjkumar KH, Dange D, Schwarz AD, Vidovic D, Jones C, Kaltsoyannis N, Mountford P, Aldridge S (2012) J Am Chem Soc 134:6500

  13. 13.

    Rekken BD, Brown TM, Fettinger JC, Tuononen HM, Power PP (2012) J Am Chem Soc 134:6504

  14. 14.

    Asay M, Inoue S, Driess M (2011) Angew Chem Int Ed 50:9589

  15. 15.

    Sasamori T, Tokitoh N (2005) In: King RB (ed) Encyclopedia of Inorganic Chemistry II. Wiley, Chichester, p 1698

  16. 16.

    Slipchenko LV, Krylov AI (2002) J Chem Phys 117:4694

  17. 17.

    Denk M, Lennon R, Hayashi R, West R, Haaland A, Belyakov H, Verne P, Wagner M, Metzler N (1994) J Am Chem Soc 116:2691

  18. 18.

    Gehrhus B, Lappert MF, Heinicke J, Boese R, Bläser D (1995) J Chem Soc Chem Commun 19:1931–1932

  19. 19.

    West R, Denk M (1996) Pure Appl Chem 68:785

  20. 20.

    Heinicke J, Oprea A, Kindermann MK, Karpati T, Nyulaszi L, Veszpremi T, Hitchcock PB, Lappert MF, Maciejewski H (1998) Organometallics 17:5599

  21. 21.

    Kira M, Ishida S, Iwamoto T, Kabuto C (1999) J Am Chem Soc 121:9722

  22. 22.

    Driess M, Yao S, Brym M, Wüllen C, Lentz D (2006) J Am Chem Soc 128:9628

  23. 23.

    Kassaee MZ, Koohi M (2013) J Phys Org Chem 26:540

  24. 24.

    Kassaee MZ, Koohi M, Mohammadi R, Ghavami M (2013) J Phys Org Chem 26:908

  25. 25.

    Koohi M, Kassaee MZ, Haerizade BN, Ghavami M, Ashenagar S (2015) J Phys Org Chem 28:514

  26. 26.

    Naderi F, Bagheri R, Yari M (2013) J Phys Theor Chem 9:281

  27. 27.

    Mekky ABH, Elhaes HG, El-Okr MM, Ibrahim MA (2015) J Nanomater Mol Nanotechnol 4:2

  28. 28.

    Mizuhata Y, Sasamori T, Tokitoh N (2009) Chem Rev 109:3479

  29. 29.

    Govindarajan M, Karabacak M, Suvitha A, Periandy S (2012) Spectrochim Acta A Mol Biomol Spectrosc 89:137

  30. 30.

    Ruiz-Espinoza A, Ramos E, Salcedo R (2013) Comput Theor Chem 1016:36

  31. 31.

    Dheivamalar S, Sugi L, Ambigai K (2016) Comput Chem 4:17

  32. 32.

    Dheivamalar S, Sugi L (2015) Spectrochim Acta A Mol Biomol Spectrosc 151:687

  33. 33.

    Hoffmann R, Schleyer PR, Schaefer HF (2008) Angew Chem Int Ed 47:7164

  34. 34.

    Nemirowski A (2007) Schreiner PR). J Org Chem 72:9533–9540

  35. 35.

    Kassaee MZ, Koohi M (2005) J Mol Struct (THEOCHEM) 755:91

  36. 36.

    Kassaee MZ, Koohi M, Arshadi S (2005) J Mol Struct (THEOCHEM) 724:61

  37. 37.

    Kassaee MZ, Koohi M (2007) J Mol Struct (THEOCHEM) 815:21

  38. 38.

    Kassaee MZ, Koohi M (2007) J Mol Struct (THEOCHEM) 810:53

  39. 39.

    Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgomery JA (1993) J Comput Chem 14:1347

  40. 40.

    Sobolewski AL, Domcke W (2002) J Phys Chem A 106:4158

  41. 41.

    Becke AD (1988) Phys Rev A 38:3098

  42. 42.

    Becke AD (1993) J Chem Phys 98:5648

  43. 43.

    Becke AD (1996) J Chem Phys 104:1040

  44. 44.

    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

  45. 45.

    Krishna R, Frisch MJ, Pople JA (1980) J Chem Phys 72:4244

  46. 46.

    Zhao Y, Truhlar DG (2008) Theor Chem Account 120:215

  47. 47.

    Francl MM, Pietro WJ, Hehre WJ, Binkley JS, Gordon MS, DeFrees DJ, Pople JA (1982) J Chem Phys 77:3654

  48. 48.

    Clark T, Chandrasekhar J, Spitznagel GW, Schleyer PR (1983) J Comput Chem 4:294

  49. 49.

    Frisch MJ, Pople JA, Binkley JS (1984) J Chem Phys 80:3265

  50. 50.

    Schlegel HB, Frisch MJ (1995) Int J Quantum Chem 54:83

  51. 51.

    Kendall RA, Dunning TH Jr, Harrison RJ (1992) J Chem Phys 96:6796

  52. 52.

    Hehre WJ, Radom L, PvR Schleyer, Pople JA (1986) Ab Initio Molecular Orbital Theory. John Wiley & Sons, New York

  53. 53.

    Foresman JB, Frisch A (1996) Exploring Chemistry with Electronic structure Methods. Gaussian Inc, Pittsburgh

  54. 54.

    Glendening ED, Reed AE, Carpenter JE, Weinhold F NBO Version 3.1

  55. 55.

    Weinhold F, Glendening ED, NBO Version 7.0

  56. 56.

    Weinhold F (2012) J Comput Chem 33:2363

  57. 57.

    Glendening ED, Landis CR, Weinhold F (2012) Wiley Interdiscip Rev Comput Mol Sci 2:1

  58. 58.

    Domingo LR, Pérez P (2011) Org Biomol Chem 9:7168

  59. 59.

    Domingo LR, Chamorro E, Pérez P (2008) J Org Chem 73:4615

  60. 60.

    Parr RG, Szentpaly L, Liu S (1999) J Am Chem Soc 121:1922

  61. 61.

    Pearson RG (1989) J Org Chem 54:1423

  62. 62.

    Chattaraj PK, Giri S (2007) J Phys Chem A 111:11116

  63. 63.

    Padmanabhan J, Parthasarathi R, Subramanian V, Chattaraj PK (2007) J Phys Chem A 111:1358

Download references


This research is financially supported by Technical and Vocational University of Tehran, Dr. Shariaty College, Tehran, and North Tehran Branch, Islamic Azad University, Tehran, Iran.

Author information

Correspondence to Hajieh Bastami.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 The calculated sum of electronic and thermal enthalpy (Htot), sum of electronic and thermal free energy (Gtot), changes of enthalpy (ΔHS-T), changes of free energy (ΔGS-T), polarizability (αxx, αyy, αzz, and <α>), nucleophilicity index (N), global electrophilicity (ω), chemical potential (μ), global hardness (η), electronegativity (χ), global softness (S), maximum electronic charge (ΔNmax), the second order perturbation theory analysis of Fock Matrix in NBO basis including stabilization energies E(2) corresponding to the most important charge transfer interactions (donor-acceptor), C-D-C angle (D being the divalent, carbene-like atom), bond lengths, XYZ Cartesian coordinates, MEP maps, and shapes of selected frontier molecular orbitals for scrutinized silylenes (27 pages) (DOCX 34341 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Koohi, M., Bastami, H. Substituent effects on stability, MEP, NBO analysis, and reactivity of 2,2,9,9-tetrahalosilacyclonona-3,5,7-trienylidenes, at density functional theory. Monatsh Chem 151, 11–23 (2020) doi:10.1007/s00706-019-02537-w

Download citation


  • Silylene
  • Stability
  • Carbene-like species
  • Isodesmic reaction