Advertisement

Monatshefte für Chemie - Chemical Monthly

, Volume 151, Issue 1, pp 99–106 | Cite as

Copper-catalyzed C–P cross-coupling of arylmethyl quaternary ammonium salts via C–N bond cleavage

  • Nutao Li
  • Feng Chen
  • Guanghui Wang
  • Qingle ZengEmail author
Original Paper
  • 31 Downloads

Abstract

A ligand-free copper-catalyzed C–P cross-coupling reaction of arylmethyl quaternary ammonium salts and diarylphosphine oxides in air is developed. Arylmethyl quaternary ammonium salts with various functional groups and a variety of dialkyl- and diarylphosphine oxides afford C–P cross-coupling products with good yields. This protocol requires no inert atmosphere, no ligand, and simple operation steps.

Graphic abstract

Keywords

Copper Cross-coupling C–N cleavage Arylmethyl quaternary ammonium salts Dialkylphosphine oxides 

Notes

Acknowledgements

This work was supported by the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (No. SKLGP2018Z002).

Supplementary material

706_2019_2535_MOESM1_ESM.pdf (2 mb)
Supplementary material 1 (PDF 2048 kb)

References

  1. 1.
    Schwan AL (2004) Chem Soc Rev 33:218CrossRefGoogle Scholar
  2. 2.
    Martin R, Buchwald SL (2008) Acc Chem Res 41:1461CrossRefGoogle Scholar
  3. 3.
    Demmer CS, Krogsgaard-Larsen N, Bunch L (2011) Chem Rev 111:7981CrossRefGoogle Scholar
  4. 4.
    Baumgartner T, Réau R (2006) Chem Rev 106:4681CrossRefGoogle Scholar
  5. 5.
    Thomas EW, Bopp BA (1984) J Pharm Sci 73:1400CrossRefGoogle Scholar
  6. 6.
    Khurmi NS, Bowles MJ, Martin J, Hara O, Lahiri A, Raftery EB (1985) Int J Cardiol 9:289CrossRefGoogle Scholar
  7. 7.
    Clercq ED (2010) Med Res Rev 30:667PubMedGoogle Scholar
  8. 8.
    Fernández-Pérez H, Etayo P, Panossian A, Vidal-Ferran A (2011) Chem Rev 111:2119CrossRefGoogle Scholar
  9. 9.
    Gwon D, Lee D, Kim J, Park S, Chang S (2014) Chem Eur J 20:12421CrossRefGoogle Scholar
  10. 10.
    Blanksby SJ, Ellison GB (2003) Acc Chem Res 36:255CrossRefGoogle Scholar
  11. 11.
    Ouyang K, Hao W, Zhang W-X, Xi Z (2015) Chem Rev 115:12045CrossRefGoogle Scholar
  12. 12.
    Wang Q, Su Y, Li L, Huang H (2016) Chem Soc Rev 45:1257CrossRefGoogle Scholar
  13. 13.
    Li G, Chen Y, Xia J (2018) Chin J Org Chem 38:1949CrossRefGoogle Scholar
  14. 14.
    Tappe FMJ, Trepohl VT, Oestreich M (2010) Synthesis 18:3037Google Scholar
  15. 15.
    Wang F, Yao K, Peng A, Wang C (2017) Chemistry 80:524Google Scholar
  16. 16.
    Andaloussi M, Lindl J, Sävmarker J, Sjöberg PJR, Larhed M (2009) Chem Eur J 15:13069CrossRefGoogle Scholar
  17. 17.
    Zhuang R, Xu J, Cai Z, Tang G, Fang M, Zhao Y (2011) Org Lett 13:2110CrossRefGoogle Scholar
  18. 18.
    Hu G, Chen W, Fu T, Peng Z, Qiao H, Gao Y, Zhao Y (2013) Org Lett 15:5362CrossRefGoogle Scholar
  19. 19.
    Yang B, Wang Z-X (2019) J Org Chem 84:1500CrossRefGoogle Scholar
  20. 20.
    Allen SE, Walvoord R, Padilla-Salinas R, Kozlowski MC (2013) Chem Rev 113:6234CrossRefGoogle Scholar
  21. 21.
    Evano G, Blanchard N, Toumi M (2008) Chem Rev 108:3054CrossRefGoogle Scholar
  22. 22.
    Zeng Q-L, Zhang L, Zhou Y (2018) Chem Rec 18:1278CrossRefGoogle Scholar
  23. 23.
    Jiang W-L, Huang Y-M, Zhou L-H, Zeng Q-L (2019) Sci China Chem 62:1213CrossRefGoogle Scholar
  24. 24.
    Wang Y, Tu X, Lv X, Zhou L-H, Zeng Q-L (2013) Tetrahedron Lett 54:6045CrossRefGoogle Scholar
  25. 25.
    Li Z, Wen Q, Zhou L, Deng X, Zeng Q-L (2015) Synthesis 47:3751CrossRefGoogle Scholar
  26. 26.
    Yang L, Feng J, Qiao M, Zeng Q-L (2018) Org Chem Front 5:24CrossRefGoogle Scholar
  27. 27.
    Jiang W-L, Li N-T, Zhou L-H, Zeng Q-L (2018) ACS Catal 8:9899CrossRefGoogle Scholar
  28. 28.
    Mao J, Hua Q, Xie G, Guo J, Yao Z, Shi D, Jia S (2009) Adv Synth Catal 351:635CrossRefGoogle Scholar
  29. 29.
    Ley SV, Thomas AW (2003) Angew Chem Int Ed 42:5400CrossRefGoogle Scholar
  30. 30.
    Scheuermann CJ (2010) Chem Asian J 5:436CrossRefGoogle Scholar
  31. 31.
    Maity P, Shacklady-McAtee DM, Yap GPA, Sirianni ER, Watson MP (2013) J Am Chem Soc 135:280CrossRefGoogle Scholar
  32. 32.
    Yuan Y, Thomé I, Kim SH, Chen D, Beyer A, Bonnamour J, Zuidema E, Chang S, Bolm C (2010) Adv Synth Catal 352:2892CrossRefGoogle Scholar
  33. 33.
    Bradamante S, Pagani GA (1986) J Chem Soc Perkin Trans 2:1035CrossRefGoogle Scholar
  34. 34.
    Ma Y, Chen F, Bao J, Wei H, Shi M, Wang F (2016) Tetrahedron Lett 57:2465CrossRefGoogle Scholar
  35. 35.
    Palomo C, Oiarbide M, Landa A, Esnal A, Linden A (2001) J Org Chem 66:4180CrossRefGoogle Scholar
  36. 36.
    Shutt JR, Trippett S (1969) J Iran Chem Soc 15:2038Google Scholar
  37. 37.
    Zhao N, Neckers DC (2000) J Org Chem 65:2145CrossRefGoogle Scholar
  38. 38.
    Mesyats SP, Tsvetkov EN, Petrov S, Shelganova NN, Shcherbina TM, Shatenshtein AI, Kabachnik MI (1974) Acad Sci USSR Div Chem Sci 23:2406CrossRefGoogle Scholar
  39. 39.
    Jugelt W, Lam W, Pragst F (1972) J Prakt Chem 314:193CrossRefGoogle Scholar
  40. 40.
    Montel S, Jia T, Walsh PJ (2013) Org Lett 16:130CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2020

Authors and Affiliations

  1. 1.State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Materials, Chemistry and Chemical EngineeringChengdu University of TechnologyChengduChina

Personalised recommendations