Monatshefte für Chemie - Chemical Monthly

, Volume 151, Issue 1, pp 123–133 | Cite as

Silica-supported heterogeneous catalysts-mediated synthesis of chalcones as potent urease inhibitors: in vitro and molecular docking studies

  • Aeysha Sultan
  • Shanavas Shajahan
  • Tansir Ahamad
  • Saad M. Alshehri
  • Noreen Sajjad
  • Mehr-un-Nisa
  • Mian Habib Ur Rehman
  • Lokman Torun
  • Muhammad Khalid
  • Roberto AcevedoEmail author
Original Paper


We herein report a facile and high yielding protocol for silica-supported heterogeneous catalysts-mediated synthesis of chalcones. A comparison of results of our synthesis with conventional synthetic protocols is also being offered to assess the efficiency of the prepared catalysts. Biological evaluation of the newly synthesized compounds as urease inhibitors was performed. Most of the compounds were found to have potent urease inhibition activity. The chalcone 3-(3-hydroxyphenyl)-1-phenylpropenone was found to be the most potent with percentage inhibition 86.17 ± 0.89 and half maximal inhibitory concentration (IC50) value 11.51 ± 0.03 µM. The molecular docking study emphasized that the same congeners 3-(furan-2-yl)-1-(4-hydroxyphenyl)propenone, 3-(4-hydroxyphenyl)-1-(4-methoxyphenyl)propanone, and 3-[4-(dimethylamino)phenyl]-1-(p-tolyl)propenone showed very good inhibitory potential against urease and show a higher docking scores 5718, 5940, 5596 and an ACE of − 246.66, − 244.79, and − 243.06 kJ/mol, respectively than the control ligand.

Graphic abstract


Heterogeneous catalyst Ligand Docking Urease Chalcones 



The authors are highly grateful to Higher Education Commission (HEC) of Pakistan for funding Dr. Aeysha Sultan under Start-up Research Grant Program (SRGP) for project No 1507, as well as for financial assistance for EIMS and NMR analyses. We are also thankful to Government College University Faisalabad for assistance in FTIR and UV analyses. The authors thank the Researchers Supporting Project number (RSP-2019/6), King Saud University, Riyadh, Saudi Arabia.

Supplementary material

706_2019_2534_MOESM1_ESM.docx (1.3 mb)
Supplementary file1 (DOCX 1349 kb)


  1. 1.
    Joel MS (1982) CACS Symposium Series 192. American Chemical Society, Washington DC, p 1Google Scholar
  2. 2.
    Londeree DJ (2002) Silica–Titania composites for water treatment. M. Eng. Thesis, University of Florida, FloridaGoogle Scholar
  3. 3.
    Xinhong Z, Xiaolai W (2007) J Mol Catal A Chem 261:225Google Scholar
  4. 4.
    Ballesteros JF, Sanz MJ, Ubeda A, Miranda MA, Iborra S, Paya M, Alcaraz M (1995) J Med Chem 38:2794PubMedGoogle Scholar
  5. 5.
    Hsieh HK, Tsao LT, Wang JP, Lin CN (2000) J Pharm Pharmacol 52:163PubMedGoogle Scholar
  6. 6.
    Go ML, Wu X, Liu XL (2005) Curr Med Chem 12:483Google Scholar
  7. 7.
    Kamble VM (2011) J Chem Pharm Res 3:639Google Scholar
  8. 8.
    Mukerjee VK, Prased AK, Raj AG, Brakhe ME, Olsen CE, Jain SC, Parmer VP (2001) Bioorg Med Chem 9:337Google Scholar
  9. 9.
    Liu UM, Wilairat P, Croft SL, Tan AL, Go M (2003) Bioorg Med Chem 11:2729PubMedGoogle Scholar
  10. 10.
    Sivakumar PM, Babu SK, Mukesh D (2007) Chem Pharm Bull 55:44PubMedGoogle Scholar
  11. 11.
    Singh HP, Chauhan CS, Pandeya SN, Sharma CS, Srivastava B, Singhal M (2010) Der Pharmacia Lettre 2:460Google Scholar
  12. 12.
    Viana GS, Bandeira MA, Mantos FJ (2003) Phytomedicine 10:189PubMedGoogle Scholar
  13. 13.
    Selvam P (2008) Int J Chem Sci 6:1196Google Scholar
  14. 14.
    Tiwari N, Dwivedi B, Nizamuddin KF, Nakanshi Y, Lee KH (2002) Bioorg Med Chem 10:699Google Scholar
  15. 15.
    Vijay K (2010) Indian J Chem 49:1109Google Scholar
  16. 16.
    Zuo Y (2012) Eur J Med Chem 50:393PubMedGoogle Scholar
  17. 17.
    Debarshi KM, Sanjay KB, Vivek A (2015) Eur J Med Chem 98:69Google Scholar
  18. 18.
    Ducki S, Forrest R, Hadfield JA, Kendall A, Lawrence NJ, Mc-Gown AT, Rennison D (1998) Bioorg Med Chem 8:1051Google Scholar
  19. 19.
    Tajudeen BA, Mohammad KK, Salar U, Chigurupati S, Fasina T, Ali F, Wadood A, Taha M, Sekhar NS, Ghufran M, Parveen S (2018) Bioorg Chem 79:179Google Scholar
  20. 20.
    Hasan A, Khan KM, Sher M, Maharvi GM, Nawaz SA, Choudhary MI, Rahman A, Supuran CT (2005) J Enzyme Inhib Med Chem 20:41PubMedGoogle Scholar
  21. 21.
    Straub TS (1995) Tetrahedron Lett 36:663Google Scholar
  22. 22.
    Sandler S, Karo W (1972) Organic functional group preparations, vol 3. Elsevier, Amsterdam, p 372Google Scholar
  23. 23.
    Bergmann ED, Ginsburg D, Pappo R (2004) Organic Reactions, vol 10. ACS Division of Chemistry, p 179Google Scholar
  24. 24.
    Chetana BP (2009) J Pharm Sci Res 3:11Google Scholar
  25. 25.
    Mobley HLT (2012) Peptide Sci 13:789Google Scholar
  26. 26.
    Abdullah MA, Thulaia, Abdulsalam AN (2019) Synth Commun 49:1613Google Scholar
  27. 27.
    Fernandes AE, Jonas AM (2019) Catal Today 334:173Google Scholar
  28. 28.
    Jin R, Zheng D, Liu R, Liu G (2018) ChemCatChem 10:1739Google Scholar
  29. 29.
    Ye R, Liu WC, Han HL, Somorjai GA (2018) ChemCatChem 10:1666Google Scholar
  30. 30.
    Pelletier A, Jeremie DA, Basset JM (2016) Acc Chem Res 49:664PubMedGoogle Scholar
  31. 31.
    Lee YT, Fong TH, Chen HM, Chang CY, Wang YH, Chern CY, Chen YH (2014) Molecules 19:641PubMedPubMedCentralGoogle Scholar
  32. 32.
    Raza AR, Sultan A, Nisar U, Janjua MRSA, Khan KM (2016) Mod Chem Appl 4:173Google Scholar
  33. 33.
    Tal DM, Einan E, Mazur Y (1981) Tetrahedron 37:4327Google Scholar
  34. 34.
    Weatherburn MW (1967) Anal Chem 39:971Google Scholar
  35. 35.
    Syam S, Abdelwahab SI, Mamary MA, Mohan S (2012) Molecules 17:6179PubMedPubMedCentralGoogle Scholar
  36. 36.
    Sharma B (2011) Asian J Chem 23:2468Google Scholar
  37. 37.
    Zheng CJ, Jiang SM, Chen ZH, Ye BJ, Piao HR (2011) Arch Pharm 344:689Google Scholar
  38. 38.
    Dina SD, Yuval I, Ruth N, Haim JW (2005) Nucleic Acids Res 33:363Google Scholar
  39. 39.
    Channar PA, Saeed A, Albericio F, Larik FA, Abbas H, Raza QM, Sung YH (2017) Molecules 22:1352PubMedCentralGoogle Scholar
  40. 40.
    Sawhney N, Kumar M, Lal R, Sharma AK, Sharma M (2017) J Mol Liq 236:422Google Scholar
  41. 41.
    Ansari FL, Wadood A, Ullah A, Iftikhar F, Ul-Haq Z (2009) J Enzyme Inhib Med Chem 24:151PubMedGoogle Scholar
  42. 42.
    Zheng CJ, Jiang SM, Chen ZH, Ye BJ, Piao HR (2011) Arch Pharm (Weinheim) 344:689Google Scholar
  43. 43.
    Ansari FL, Umbreen S, Hussain L, Makhmoor T, Nawaz SA, Lodhi MA, Khan SN, Shaheen F, Choudhary, Muhammad I, Atta R (2005) Chem Biodivers 2:487.Google Scholar
  44. 44.
    Zhao PL, Liu CL, Huang W, Wang YZ, Yang GF (2007) J Agric Food Chem 55:5697PubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2020

Authors and Affiliations

  • Aeysha Sultan
    • 1
  • Shanavas Shajahan
    • 2
  • Tansir Ahamad
    • 3
  • Saad M. Alshehri
    • 3
  • Noreen Sajjad
    • 4
  • Mehr-un-Nisa
    • 1
  • Mian Habib Ur Rehman
    • 1
  • Lokman Torun
    • 5
  • Muhammad Khalid
    • 6
  • Roberto Acevedo
    • 7
    Email author
  1. 1.Department of ChemistryUniversity of EducationFaisalabadPakistan
  2. 2.Nano and Hybrid Materials Laboratory, Department of PhysicsPeriyar UniversitySalemIndia
  3. 3.Department of Chemistry, College of ScienceKing Saud UniversityRiyadhSaudi Arabia
  4. 4.Department of ChemistryUniversity of LahoreLahorePakistan
  5. 5.Department of ChemistryYilditz University of Engineering and TechnologyIstanbulTurkey
  6. 6.Department of ChemistryKhawaja Ghulam Fareed University of Engineering and TechnologyRahim Yar KhanPakistan
  7. 7.Facultad de Ingeniería y TecnologíaUniversidad San SebastiánSantiagoChile

Personalised recommendations