Advertisement

Monatshefte für Chemie - Chemical Monthly

, Volume 151, Issue 1, pp 33–43 | Cite as

A catalyst coated electrode for electrochemical formaldehyde oxidation

  • Milica SpasojevicEmail author
  • Miroslav Spasojevic
  • Lenka Ribic-Zelenovic
Original Paper
  • 25 Downloads

Abstract

Thermally prepared catalytic coatings on a titanium substrate were composed of a mixture of nanocrystals of metallic Pt and RuO2 of rutile structure and used for electrooxidation of formaldehyde. The size of the RuO2 nanocrystals increased, whereas those of Pt decreased with increasing the content of RuO2 in the mixture. At more positive potentials, the maximum catalytic activities showed the coatings with lower content of RuO2. Mechanism of formaldehyde oxidation was derived to show two reaction pathways. In the first one, H2C(OH)2 was directly oxidized to CO2, whereas COad was formed in the latter. COad is strongly adsorbed on Pt atoms, which causes blocking of these atoms and thus, preventing direct dehydrogenation of H2C(OH)2 to CO2. The overall catalytic effect of the mixture of nanocrystals was caused by the bifunctional mechanism. Thus, the Ru atoms formed the oxy species at more negative potentials than Pt. These oxy species oxidized the COad intermediates, bound to adjacent Pt atoms and accordingly, discharged them for dehydrogenation of new molecules of H2C(OH)2.

Graphic abstract

Keywords

Electrochemistry Cyclic voltammetry Nanostructures X Ray structure determination Catalysts Formaldehyde 

Notes

Acknowledgements

This work has been supported by the Ministry of Education and Science of the Republic of Serbia through project Ref. No. 172057

References

  1. 1.
    Yu X, Pickup PG (2008) J Power Sources 182:124Google Scholar
  2. 2.
    Rice C, Ha S, Masel RI, Waszczuk P, Wieckowski A, Barnard T (2002) J Power Sources 111:83Google Scholar
  3. 3.
    Korzeniewski C, Childers CL (1998) J Phys Chem B 102:489Google Scholar
  4. 4.
    Guthrie JP (1975) Can J Chem 53:898Google Scholar
  5. 5.
    Spasojević MD, Adžić RR, Despić AR (1980) J Electroanal Chem 109:261Google Scholar
  6. 6.
    Adžić RR, Hofman MI, Dražić DM (1980) J Electroanal Chem 110:361Google Scholar
  7. 7.
    Kazarinov VE, Vassiliev YB, Andreev VN, Kuliev SA (1981) J Electroanal Chem 123:345Google Scholar
  8. 8.
    Olivi P, Bulhões LOS, Léger J-M, Hahn F, Beden B, Lamy C (1994) J Electroanal Chem 370:241Google Scholar
  9. 9.
    Olivi P, Bulhões LOS, Léger J-M, Hahn F, Beden B, Lamy C (1996) Electrochim Acta 41:927Google Scholar
  10. 10.
    Koper MTM, Hachkar M, Beden B (1996) J Chem Soc Faraday Trans 92:3975Google Scholar
  11. 11.
    Miki A, Ye S, Senzaki T, Osawa M (2004) J Electroanal Chem 563:23Google Scholar
  12. 12.
    Samjeské G, Miki A, Osawa M (2007) J Phys Chem C 111:15074Google Scholar
  13. 13.
    Avramov-Ivic M, Adzic RR, Bewick A, Razaq M (1988) J Electroanal Chem, Interfacial. Electrochem 240:161Google Scholar
  14. 14.
    Kitamura F, Takahashi M, Ito M (1986) Chem Phys Lett 123:273Google Scholar
  15. 15.
    Nishimura K, Ohnishi R, Kunimatsu K, Enyo M (1989) J Electroanal Chem, Interfacial. Electrochem 258:219Google Scholar
  16. 16.
    Sun SG, Lu GQ, Tian ZW (1995) J Electroanal Chem 393:97Google Scholar
  17. 17.
    Bełtowska-Brzezinska M, Heitbaum J, Vielstich W (1985) Electrochim Acta 30:1465Google Scholar
  18. 18.
    Xu Y, Schell M (1990) J Phys Chem 94:7137Google Scholar
  19. 19.
    Nakabayashi S, Kira A (1992) J Phys Chem 96:1021Google Scholar
  20. 20.
    Batista EA, Iwasita T (2006) Langmuir 22:7912PubMedGoogle Scholar
  21. 21.
    Osawa M (2001) Surface-Enhanced Infrared Absorption. In: Kawata S (ed), Near-Field Optics and Surface Plasmon Polaritons. Top. Appl. Phys, vol 81. Springer, Berlin, p 163.Google Scholar
  22. 22.
    Zhang Y, Zhang M, Cai Z, Chen M, Cheng F (2012) Electrochim Acta 68:172Google Scholar
  23. 23.
    Guo Y, Xu YT, Gao GH, Wang T, Zhao B, Fu XZ, Sun R, Wong CP (2015) Catal Commun 58:40Google Scholar
  24. 24.
    Yan RW, Jin BK (2013) Chin Chem Lett 24:159Google Scholar
  25. 25.
    Nellaiappan S, Kumar AS, Nisha S, Pillai KC (2017) Electrochim Acta 249:227Google Scholar
  26. 26.
    Bansal V, Li V, O’Mullane AP, Bhargava SK (2010) CrystEngComm 12:4280Google Scholar
  27. 27.
    Yu Y, Jia M, Tian H, Hu J (2014) J Power Sources 267:123Google Scholar
  28. 28.
    Li Z, Lu X, Li B, Bai L, Wang Q (2015) ECS Electrochem Lett 4:H24Google Scholar
  29. 29.
    Trivedi D, Crosse J, Tanti J, Cass AJ, Toghill KE (2018) Sens Actuators B 270:298Google Scholar
  30. 30.
    Hassaninejad-Darzi SK (2014) J Electroceram 33:252Google Scholar
  31. 31.
    Hasanzadeh M, Khalilzadeh B, Shadjou N, Karim-Nezhad G, Saghatforoush L, Kazeman I, Abnosi MH (2010) Electroanalysis 22:168Google Scholar
  32. 32.
    Yang L, Zhao F, Xiao F, Zeng B (2011) Anal Bioanal Electrochem 3:175Google Scholar
  33. 33.
    Raoof JB, Hosseini SR, Ojani R, Aghajani S (2015) J Mol Liq 204:106Google Scholar
  34. 34.
    Safavi A, Momeni S, Tohidi M (2012) Electroanalysis 24:1981Google Scholar
  35. 35.
    Safavi A, Farjami F (2011) Electroanalysis 23:1842Google Scholar
  36. 36.
    Miao F, Tao B (2013) J Nanosci Nanotechnol 13:3104PubMedGoogle Scholar
  37. 37.
    de Lima RB, Massafera MP, Batista EA, Iwasita T (2007) J Electroanal Chem 603:142Google Scholar
  38. 38.
    Touny AH, Tammam RH, Saleh MM (2018) Appl Catal B: Environ 224:1017Google Scholar
  39. 39.
    Momeni S, Sedaghati F (2018) Microchem J 143:64Google Scholar
  40. 40.
    Spasojevic M, Ribic-Zelenovic L, Spasojevic M, Trisovic T (2019) Russ J Electrochem 55:1350Google Scholar
  41. 41.
    Burke LD, O'Neill JF (1979) J Electroanal Chem, Interfacial. Electrochem 101:341Google Scholar
  42. 42.
    Franaszczuk K, Sobkowski J (1992) J Electroanal Chem 327:235Google Scholar
  43. 43.
    Spasojević MD, Krstajić NV, Jakšić MM (1987) J Mol Catal 40:311Google Scholar
  44. 44.
    Spasojevic M, Ribic-Zelenovic L, Spasojevic P (2012) Ceram Int 38:5827Google Scholar
  45. 45.
    Spasojevic M, Krstajic N, Spasojevic P, Ribic-Zelenovic L (2015) Chem Eng Res Des 93:591Google Scholar
  46. 46.
    Hadzi-Jordanov S, Angerstein-Kozlowska H, Vukovic M, Conway BE (1977) J Phys Chem 81:2271Google Scholar
  47. 47.
    Ticanelli E, Beery JG, Paffett MT, Gottesfeld S (1989) J Electroanal Chem, Interfacial. Electrochem 258:61Google Scholar
  48. 48.
    Capon A, Parson R (1973) J Electroanal Chem, Interfacial. Electrochem. 44:1Google Scholar
  49. 49.
    Wakisaka M, Mitsui S, Hirose Y, Kawashima K, Uchida H, Watanabe M (2006) J Phys Chem B 110:23489PubMedGoogle Scholar
  50. 50.
    Rigsby MA, Zhou WP, Lewera A, Duong HT, Bagus PS, Jaegermann W, Hunger R, Wieckowski A (2008) J Phys Chem C 112:15595Google Scholar
  51. 51.
    Garrick TR, Diao W, Tengco JM, Stach EA, Senanayake SD, Chen DA, Monnier JR, Weidner JW (2016) Electrochim Acta 195:106Google Scholar
  52. 52.
    Tian M, Shi S, Shen Y, Yin H (2019) Electrochim Acta 293:390Google Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2020

Authors and Affiliations

  • Milica Spasojevic
    • 1
    Email author
  • Miroslav Spasojevic
    • 2
  • Lenka Ribic-Zelenovic
    • 2
  1. 1.Innovation Center of the Faculty of ChemistryUniversity of BelgradeBelgradeSerbia
  2. 2.Joint Laboratory for Advanced Materials of SASA, Section for Amorphous Systems, Faculty of Technical SciencesUniversity of KragujevacČačakSerbia

Personalised recommendations