Advertisement

Monatshefte für Chemie - Chemical Monthly

, Volume 150, Issue 11, pp 1911–1920 | Cite as

Development of an amperometric hydrazine sensor at a disposable poly(alizarin red S) modified pencil graphite electrode

  • Serkan KarakayaEmail author
Original Paper
  • 66 Downloads

Abstract

In the present study, electrocatalytic oxidation of hydrazine was examined by both cyclic voltammetry and amperometry methods at a disposable, poly(alizarin red S) modified pencil graphite electrode (poly(ALS)/PGE) for the first time. Electrochemical behaviors of both bare PGE and poly(ALS)/PGE were tested by cyclic voltammetry towards 1.0 mM hydrazine in pH 9.0 Britton–Robinson buffer solution. Cyclic voltammograms showed that the oxidation peak potential of hydrazine at PGE (+ 0.70 V) was significantly reduced at poly(ALS)/PGE (+ 0.35 V) and also, a significant increment in oxidation current was observed. The recorded CVs confirmed that poly(ALS) shows high electrocatalytic effect towards oxidation of hydrazine. Secondly, the effects of monomer concentration, cycle number used in electropolymerization step and pH value of supporting solution on oxidation current of hydrazine were also optimized and found to be 1.0 mM, 5 cycle, and pH 10.0, respectively. The designed sensor shows a wide linear response range between 1.0 and 600 µM hydrazine with a LOD of 0.28 µM and a sensitivity of 833 µA mM−1 cm−2. The selectivity property of the poly(ALS)/PGE was tested in presence of various interferences. Applicability studies of the poly(ALS)/PGE were also performed on different water samples and high recovery values (95–108%) were obtained.

Graphic abstract

Keywords

Hydrazine Alizarin red S Pencil graphite electrode Redox reactions Sensor Electrochemistry 

Notes

Acknowledgements

The author thanks to ÇOBİLTUM (Scientific and Technological Research and Application Center of Çanakkale Onsekiz Mart University) for the surface characterizations of the electrodes.

References

  1. 1.
    Gowthaman N, Shankar S, John SA (2018) ACS Sustain Chem Eng 6:17302Google Scholar
  2. 2.
    Kalaivani A, Narayanan SS (2018) J Mater Sci: Mater Electron 29:20146Google Scholar
  3. 3.
    Rahman MM, Alfonso VG, Fabregat-Santiago F, Bisquert J, Asiri AM, Alshehri AA, Albar HA (2017) Microchim Acta 184:2123Google Scholar
  4. 4.
    Karuppasamy KR, Devasenathipathy R, Wang S-F (2017) Microchim Acta 184:2569Google Scholar
  5. 5.
    Devasenathipathy R, Wang S-F (2018) Int J Electrochem Sci 13:4901Google Scholar
  6. 6.
    Amiripour F, Azizi SN, Ghasemi S (2018) Biosens Bioelectron 107:111PubMedGoogle Scholar
  7. 7.
    Faisal M, Harraz FA, Al-Salami A, Al-Sayari S, Al-Hajry A, Al-Assiri M (2018) Mater Chem Phys 214:126Google Scholar
  8. 8.
    Shahid MM, Rameshkumar P, Basirunc WJ, Wijayantha U, Chiu WS, Khiew PS, Huang NM (2018) Electrochim Acta 259:606Google Scholar
  9. 9.
    Dai G, Xie J, Li C, Liu S (2017) J Alloys Compd 727:43Google Scholar
  10. 10.
    Freitas LV, Lima KC, Silva SM, Leite FR, Fernandes RN, Santos WT, Damos FS, Luz R (2018) J Brazilian Chem Soc 29:2096Google Scholar
  11. 11.
    Gilani NS, Azizi SN, Ghasemi S (2017) B Mater Sci 40:177Google Scholar
  12. 12.
    Avanes A, Hasanzadeh-Karamjavan M, Shokri-Jarcheloo G (2019) Microchim Acta 186:441Google Scholar
  13. 13.
    Yang YJ, Li W (2018) Fullerenes, Nanotubes. Carbon Nanostruct 26:837Google Scholar
  14. 14.
    Yu H, Wang S-S, Song K-L, Li R (2019) Int J Environ Anal Chem 99:1Google Scholar
  15. 15.
    Umar A, Kansal SK, Mehta SK (2013) Sens Actuators, B 188:372Google Scholar
  16. 16.
    Ozoemena KI, Nyokong T (2005) Talanta 67:162PubMedGoogle Scholar
  17. 17.
    Yilong Z, Dean Z, Daoliang L (2015) Int J Electrochem Sci 10:144Google Scholar
  18. 18.
    Karakaya S, Dilgin Y (2019) Electroanalysis 31:1373Google Scholar
  19. 19.
    Karakaya S, Dilgin DG (2019) Monatsh Chem 150:1003Google Scholar
  20. 20.
    Dilgin DG (2018) Anal Lett 51:186Google Scholar
  21. 21.
    Bhanjana G, Chaudhary GR, Dilbaghi N, Chauhan M, Kim K-H, Kumar S (2019) Electrochim Acta 293:283Google Scholar
  22. 22.
    Li Y, Li Z, Ye W, Zhao S, Yang Q, Ma S, Xiao G, Liu G, Wang Y, Yue Z (2019) Electrochim Acta 295:1006Google Scholar
  23. 23.
    Abbas MW, Soomro RA, Kalwar NH, Zahoor M, Avci A, Pehlivan E, Hallam KR, Willander M (2019) Microchem J 146:517Google Scholar
  24. 24.
    Duan D, Yang H, Ding Y, Li L, Ma G (2019) Electrochim Acta 302:137Google Scholar
  25. 25.
    Mo F, Xie J, Wu T, Liu M, Zhang Y, Yao S (2019) Food Chem 292:253PubMedGoogle Scholar
  26. 26.
    Khoshroo A, Hosseinzadeh L, Sobhani-Nasab A, Rahimi-Nasrabadi M, Ahmadi F (2019) Microchem J 145:1185Google Scholar
  27. 27.
    Chen H, Yang T, Liu F, Li W (2019) Sens Actuators, B 286:401Google Scholar
  28. 28.
    Huang D, Li X, Chen M, Chen F, Wan Z, Rui R, Wang R, Fan S, Wu H (2019) J Electroanal Chem 841:101Google Scholar
  29. 29.
    Zhao L, Li J, Chen X, Cheng D, Zhang J, Yang H (2019) J Electrochem Soc 166:B631Google Scholar
  30. 30.
    Nemakal M, Aralekallu S, Mohammed I, Pari M, Reddy KV, Sannegowda LK (2019) Electrochim Acta 318:342Google Scholar
  31. 31.
    Aralekallu S, Mohammed I, Manjunatha N, Palanna M, Sannegowda LK (2019) Sens Actuators, B 282:417Google Scholar
  32. 32.
    Amare M, Teklay W (2019) Cogent Chem 5:1576349Google Scholar
  33. 33.
    Li M, Guo Z, Yang H, Liu Y, Tong Y, Kong J (2019) Int J Electrochem Sci 14:943Google Scholar
  34. 34.
    Ma W, Zhang Y, Li F, Kou D, Lutkenhaus JL (2019) Polymers 11:165PubMedCentralGoogle Scholar
  35. 35.
    Mahanthesha K, Swamy BK, Chandra U, Bodke YD, Pai KVK, Sherigara B (2009) Int J Electrochem Sci 4:1237Google Scholar
  36. 36.
    Aravindan N, Sangaranarayanan M (2017) J Electroanal Chem 789:148Google Scholar
  37. 37.
    Dadpou B, Nematollahi D (2016) J Electrochem Soc 163:H559Google Scholar
  38. 38.
    Liu J, Zhou D, Liu X, Wu K, Wan C (2009) Collid Surf B 70:20Google Scholar
  39. 39.
    Schumacher S, Nagel T, Scheller FW, Gajovic-Eichelmann N (2011) Electrochim Acta 56:6607Google Scholar
  40. 40.
    Liu H, Chen Y, Liu Y, Yang Z (2013) J Solid State Electrochem 17:2623Google Scholar
  41. 41.
    Ba X, Luo L, Ding Y, Zhang Z, Chu Y, Wang B, Ouyang X (2012) Anal Chim Acta 752:94PubMedGoogle Scholar
  42. 42.
    Dilgin DG, Karakaya S (2016) Mater Sci Eng, C 63:570Google Scholar
  43. 43.
    Ardakani MM, Rahimi P, Zare HR, Naeimi H (2007) Electrochim Acta 52:6118Google Scholar
  44. 44.
    Ardakani MM, Karimi MA, Zare MM, Mirdehghan SM (2008) Int J Electrochem Sci 3:246Google Scholar
  45. 45.
    Mazloum-Ardakani M, Mazidi R, Mashhadizadeh MH, Rahimi P, Karimi MA (2010) Sci China Chem 53:1195Google Scholar
  46. 46.
    Golabi S, Zare H, Hamzehloo M (2001) Microchem J 69:13Google Scholar
  47. 47.
    Xu F, Liu Y, Xie S, Wang L (2016) Anal Methods 8:316Google Scholar
  48. 48.
    Mohammadiazar S, Amini N, Keyvan K, Maleki A (2019) Anal Bioanal Chem 11:985Google Scholar
  49. 49.
    Yang Z, Zheng X, Zheng J (2017) Chem Eng J 327:431Google Scholar
  50. 50.
    Zhao Z, Sun Y, Li P, Zhang W, Lian K, Hu J, Chen Y (2016) Talanta 158:283PubMedGoogle Scholar
  51. 51.
    Samadi-Maybodi A, Ghasemi S, Ghaffari-Rad H (2015) Sens Actuators, B 220:627Google Scholar
  52. 52.
    Yan L, Bo X, Zhu D, Guo L (2014) Talanta 120:304PubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of Science and ArtsÇanakkale Onsekiz Mart UniversityÇanakkaleTurkey

Personalised recommendations