Advertisement

Monatshefte für Chemie - Chemical Monthly

, Volume 150, Issue 11, pp 1929–1940 | Cite as

Synthesis and structural study of 2-(haloalkyl)-3-methylchromones

  • Christian D. Alcívar León
  • Luis A. Ramos Guerrero
  • Pablo M. Bonilla Valladares
  • Gustavo A. Echeverría
  • Oscar E. Piro
  • Sonia E. UlicEmail author
  • Jorge L. JiosEmail author
  • Peter Langer
Original Paper
  • 72 Downloads

Abstract

The novel 2-(difluoromethyl)-3-methylchromone, 2-(dichloromethyl)-3-methylchromone, and 3-methyl-2-(perfluoroethyl)chromone were synthesized by a one-pot method and characterized through MS spectrometry, cyclic voltammetry, and vibrational (IR, Raman), UV–Vis, fluorescence, and NMR (1H, 13C, and 19F) spectroscopy. The crystal structure of 2-(difluoromethyl)-3-methylchromone and 2-(dichloromethyl)-3-methylchromone determined by X-ray diffraction methods were used to calculate their intermolecular interactions and crystal lattice energies together with the Hirshfeld surface analysis.

Graphic abstract

Keywords

Haloalkylchromones Spectroscopic properties Single crystal X-ray diffraction Quantum chemical calculations Hirshfeld surface analysis 

Notes

Acknowledgements

The authors thank Universidad Nacional de La Plata (UNLP), CONICET, Departamento de Ciencias Básicas de la Universidad Nacional de Luján (Argentina) and DAAD (Germany) for financial support. S.E.U and J.L.J specially thanks Deutscher Akademischer Austauschdienst (DAAD) for an equipment grant and financial support. CDAL thanks SENESCYT for the fellowship and financial support. This work was supported by UNLP (11/X830 and 11/X848), CONICET (PIP: 0359 and 1529), and by ANPCyT (PME06 2804 and PICT06 2315) of Argentina. S.E.U., G.A.E., and O.E.P, are Research Fellows of CONICET; J.L.J. is a Researcher of Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CICPBA), Argentina.

Supplementary material

706_2019_2512_MOESM1_ESM.cif (162 kb)
Supplementary material 1 (CIF 162 kb)
706_2019_2512_MOESM2_ESM.cif (100 kb)
Supplementary material 2 (CIF 100 kb)
706_2019_2512_MOESM3_ESM.docx (8.5 mb)
Supplementary material 3 (DOCX 8685 kb)

References

  1. 1.
    Keri RS, Budagumpi S, Pai RK, Balakrishna RG (2014) Eur J Med Chem 78:340PubMedGoogle Scholar
  2. 2.
    Nenajdenko V (2015) Fluorine in heterocyclic chemistry: 5-membered heterocycles and macrocycles. Springer, BerlinGoogle Scholar
  3. 3.
    Donnelly D, Geoghegan R, O’Brien C, Philbin E, Wheeler TS (1965) J Med Chem 8:872PubMedGoogle Scholar
  4. 4.
    Matos MJ, Vazquez-Rodriguez S, Uriarte E, Santana L, Borges F (2015) Expert Opin Ther Pat 25:1285PubMedGoogle Scholar
  5. 5.
    Reis J, Gaspar A, Milhazes N, Borges F (2017) J Med Chem 60:7941PubMedGoogle Scholar
  6. 6.
    Silva CFM, Batista VF, Pinto DCGA, Silva AMS (2018) Expert Opin Drug Discov 13:795PubMedGoogle Scholar
  7. 7.
    Gaspar A, Matos MJ, Garrido J, Uriarte E, Borges F (2014) Chem Rev 114:4960PubMedGoogle Scholar
  8. 8.
    Emami S, Ghanbarimasir Z (2015) Eur J Med Chem 93:539PubMedGoogle Scholar
  9. 9.
    Demirayak S, Yurttas L, Gundogdu-Karaburun N, Karaburun AC, Kayagil I (2017) Saudi Pharma J 25:1063Google Scholar
  10. 10.
    Liu H, Xu R, Feng L, Guo W, Cao N, Qian C, Teng P, Wang L, Wu X, Sun Y, Li J, Shen Y, Xu Q (2012) PLoS ONE 7:e37168PubMedPubMedCentralGoogle Scholar
  11. 11.
    Treml J, Šmejkal K (2016) Compr Rev Food Sci Food Saf 15:720Google Scholar
  12. 12.
    Tapas AR, Sakarkar D, Kakde R (2008) Trop J Pharm Res 7:1089Google Scholar
  13. 13.
    Amić D, Davidović-Amić D, Bešlo D, Trinajstić N (2003) Croat Chem Acta 76:55Google Scholar
  14. 14.
    Farkas O, Jakus J, Héberger K (2004) Molecules 9:1079PubMedPubMedCentralGoogle Scholar
  15. 15.
    Yadav P, Parshad B, Manchanda P, Sharma SK (2014) Curr Top Med Chem 14:2552PubMedGoogle Scholar
  16. 16.
    Rasulev BF, Abdullaev ND, Syrov VN, Leszczynski J (2005) QSAR Comb Sci 24:1056Google Scholar
  17. 17.
    Salar U, Khan KM, Chigurupati S, Taha M, Wadood A, Vijayabalan S, Ghufran M, Perveen S (2017) Sci Rep 7:16980PubMedPubMedCentralGoogle Scholar
  18. 18.
    Gomes A, Fernandes E, Garcia MBQ, Silva AMS, Pinto DCGA, Santos CMM, Cavaleiro JAS, Lima JLFC (2008) Bioorg Med Chem 16:7939PubMedGoogle Scholar
  19. 19.
    Born M, Carrupt PA, Zini R, Brée F, Tillement JP, Hostettmann K, Testa B (1996) Helv Chim Acta 79:1147Google Scholar
  20. 20.
    Gil ES, Couto RO (2013) Rev Bras Farmacogn 23:542Google Scholar
  21. 21.
    Ahmed S, Shakeel F (2012) Czech J Food Sci 30:153Google Scholar
  22. 22.
    Hendrickson HP, Kaufman AD, Lunte CE (1994) J Pharm Biomedl Anal 12:325Google Scholar
  23. 23.
    Dias MM, Machado NFL, Marques MPM (2011) Food Funct 2:595PubMedGoogle Scholar
  24. 24.
    Yang S-W, Elangovan A, Ho T-I (2005) Photochem Photobiol Sci 4:327PubMedGoogle Scholar
  25. 25.
    Alcívar León CD, Echeverría GA, Piro OE, Ulic SE, Jios JL, Luna Tapia CA, Mera Guzmán MF (2019) Mol Phys 117:368Google Scholar
  26. 26.
    Alcívar León CD, Echeverría GA, Piro OE, Ulic SE, Jios JL (2015) Spectrochim Acta A 136:1358Google Scholar
  27. 27.
    Alcivar Leon CD, Echeverria GA, Piro OE, Ulic SE, Jios JL, Pereañez JA, Henao Castaneda IC, Perez H (2017) New J Chem 41:14659Google Scholar
  28. 28.
    Farrugia LJ (1997) J Appl Cryst 30:565Google Scholar
  29. 29.
    Alcívar León CD, Echeverría GA, Piro OE, Ulic SE, Jios JL, Burgos Paci M, Argüello GA (2016) Chem Phys 472:142Google Scholar
  30. 30.
    Erickson JA, McLoughlin JI (1995) J Org Chem 60:1626Google Scholar
  31. 31.
    Jones CR, Baruah PK, Thompson AL, Scheiner S, Smith MD (2012) J Am Chem Soc 134:12064PubMedGoogle Scholar
  32. 32.
    Caminati W, Melandri S, Moreschini P, Favero PG (1999) Angew Chem Int Ed 38:2924Google Scholar
  33. 33.
    Sessler CD, Rahm M, Becker S, Goldberg JM, Wang F, Lippard SJ (2017) J Am Chem Soc 139:9325PubMedPubMedCentralGoogle Scholar
  34. 34.
    Slater JC (1964) J Chem Phys 41:3199Google Scholar
  35. 35.
    Levina EO, Chernyshov IY, Voronin AP, Alekseiko LN, Stash AI, Vener MV (2019) RSC Adv 9:12520Google Scholar
  36. 36.
    McKinnon JJ, Spackman MA, Mitchell AS (2004) Acta Crystallogr Sect B 60:627Google Scholar
  37. 37.
    Salpage SR, Smith MD, Shimizu LS (2016) J Chem Crystallogr 46:170Google Scholar
  38. 38.
    Dey D, Bhandary S, Thomas SP, Spackman MA, Chopra D (2016) Phys Chem Chem Phys 18:31811PubMedGoogle Scholar
  39. 39.
    Hayes SA, Berger RJF, Neumann B, Mitzel NW, Bader J, Hoge B (2010) Dalton Trans 39:5630PubMedGoogle Scholar
  40. 40.
    Waerder B, Steinhauer S, Bader J, Neumann B, Stammler H-G, Vishnevskiy YV, Hoge B, Mitzel NW (2015) Dalton Trans 44:13347PubMedGoogle Scholar
  41. 41.
    Alcívar León CD (2016) Estudio de nuevos benzopiranos haloalquil sustituidos. Doctoral Thesis, Facultad de Ciencias Exactas, Universidad Nacional de La PlataGoogle Scholar
  42. 42.
    Hidalgo A, Avendaño Jiménez LP, Ramos LA, Mroginski MA, Jios JL, Ulic SE, Echeverría GA, Piro OE, Castellano E (2012) J Phys Chem A 116:1110PubMedGoogle Scholar
  43. 43.
    Nagabalasubramanian PB, Periandy S, Mohan S, Govindarajan M (2009) Spectrochim Acta A 73:277Google Scholar
  44. 44.
    McKean DC, Lavalley JC, Saur O, Edwards HGM, Fawcett V (1977) Spectrochim Acta A 33:913Google Scholar
  45. 45.
    Iogansen AV (1999) Spectrochim Acta A 55:1585Google Scholar
  46. 46.
    Ortiz RP, Casado J, Hernández V, Navarrete JTL, Letizia JA, Ratner MA, Facchetti A, Marks TJ (2009) Chem Eur J 15:5023Google Scholar
  47. 47.
    Ye C, Li M, Luo J, Chen L, Tang Z, Pei J, Jiang L, Song Y, Zhu D (2012) J Mater Chem 22:4299Google Scholar
  48. 48.
    Bredas J-L (2014) Mater Horiz 1:17Google Scholar
  49. 49.
    Duvenhage M, Visser H, Ntwaeaborwa O, Swart H (2014) Phys B 439:46Google Scholar
  50. 50.
    Rocha M, Di Santo A, Echeverría GA, Piro OE, Cukiernik FD, Ulic SE, Gil DM (2017) J Mol Struct 1133:24Google Scholar
  51. 51.
    Neto AC, Ducati LC, Rittner R, Tormena CF, Contreras RH, Frenking G (2009) J Chem Theory Comput 5:2222PubMedGoogle Scholar
  52. 52.
    Dybiec K, Gryff-Keller A (2009) Magn Reson Chem 47:63PubMedGoogle Scholar
  53. 53.
    Autschbach J, Ziegler T (2007) Relativistic Computation of NMR Shieldings and Spin-Spin Coupling Constants. In: Harris RK, Wasylishen RL (eds), eMagRes.  https://doi.org/10.1002/9780470034590.emrstm0451
  54. 54.
    Kaupp M (2004) Theor Comput Chem 14:552Google Scholar
  55. 55.
    Gorenstein DG (1977) J Am Chem Soc 99:2254Google Scholar
  56. 56.
    Brey WS, Brey ML (2011) Fluorine-19 NMR. In: Harris RK, Wasylishen RL (eds), eMagRes.  https://doi.org/10.1002/9780470034590.emrstm0170.pub2
  57. 57.
    Henao Castañeda IC, Ulic SE, Della Védova CO, Metzler-Nolte N, Jios JL (2011) Tetrahedron Lett 52:1436Google Scholar
  58. 58.
    Ribeiro AA, Umayahara K (2003) Magn Reson Chem 41:107Google Scholar
  59. 59.
    CrysAlisPro C, CrysAlisPro R (2009) including ABSPACK. Oxford Diffraction Ltd, Yarnton, EnglandGoogle Scholar
  60. 60.
    Sheldrick GM (2015) Acta Crystallogr Sect C 71:3Google Scholar
  61. 61.
    Sheldrick G (2008) Acta Crystallogr Sect A 64:112Google Scholar
  62. 62.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03. Gaussian Inc, PittsburghGoogle Scholar
  63. 63.
    Mackenzie CF, Spackman PR, Jayatilaka D, Spackman MA (2017) IUCrJ 4:575PubMedPubMedCentralGoogle Scholar
  64. 64.
    Turner MJ, Grabowsky S, Jayatilaka D, Spackman MA (2014) J Phys Chem Lett 5:4249PubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Centro de Investigación de Alimentos, CIAL, Facultad de Ciencias de la Ingeniería e IndustriasUniversidad UTEQuitoEcuador
  2. 2.Facultad de Ciencias Químicas, Universidad Central del Ecuador, Francisco Viteri y Gilberto Sobral s/nCiudad UniversitariaQuitoEcuador
  3. 3.Departamento de Física, Facultad de Ciencias ExactasUniversidad Nacional de La Plata e IFLP (CONICET, CCT-La Plata)La PlataArgentina
  4. 4.CEQUINOR (CONICET-UNLP), Facultad de Ciencias ExactasUniversidad Nacional de La PlataLa PlataArgentina
  5. 5.Departamento de Ciencias BásicasUniversidad Nacional de LujánBuenos AiresArgentina
  6. 6.UPL (UNIDAD PLAPIMU-LASEISIC, UNLP-CIC), Departamento de Química, Facultad de Ciencias ExactasUniversidad Nacional de La PlataLa PlataArgentina
  7. 7.Institut für Chemie, Universität RostockRostockGermany
  8. 8.Leibniz Institut für KatalyseUniversität Rostock e. V. (LIKAT)RostockGermany

Personalised recommendations