Advertisement

Monatshefte für Chemie - Chemical Monthly

, Volume 150, Issue 11, pp 1959–1972 | Cite as

New derivatives of 3-azabicyclo[3.2.2]nonanes and their antiprotozoal activities

  • Michael Hoffelner
  • Markus Petritsch
  • Sarfraz Ahmad
  • Werner SeebacherEmail author
  • Johanna Dolensky
  • Patrick Hochegger
  • Marcel Kaiser
  • Pascal Mäser
  • Robert Saf
  • Robert Weis
Original Paper
  • 29 Downloads

Abstract

New derivatives of 3-azabicyclo[3.2.2]nonanes were prepared and characterized using FT-IR spectroscopy, HRMS, and NMR spectroscopy. The new compounds were investigated in vitro for their antiplasmodial activities against the sensitive NF54 strain and the multiresistant K1 strain of Plasmodium falciparum, and for their antitrypanosomal activity against Trypanosoma brucei rhodesiense. The N-methyl-6,9-diphenyl-N-[(pyridin-4-yl)methyl]-3-azabicyclo[3.2.2]nonan-1-amine possessed high antiplasmodial in vitro activity against both strains of P. falciparum (NF54: IC50 = 0.848 nm; K1: IC50 = 2 nm). The most promising ones were further investigated in a mouse model for their in vivo activity against Plasmodium berghei.

Graphic abstract

Keywords

Amines Antiplasmodial activity Antitrypanosomal activity Drug research Hybrids Structure–activity relationships 

Notes

Compliance with ethical standards

Ethical approval

In vivo efficacy studies in mice were conducted at the Swiss Tropical and Public Health Institute (Basel) according to the rules and regulations for the protection of animal rights (“Tierschutzverordnung”) of the Swiss “Bundesamt für Veterinärwesen”. They were approved by the veterinary office of Canton Basel-Stadt, Switzerland.

References

  1. 1.
    Holota S, Kryshchyshyn A, Derkach H, Trufin Y, Demchuk I, Gzella A, Grellier P, Lesyk R (2019) Bioorg Chem 86:126CrossRefGoogle Scholar
  2. 2.
    Kennedy PGE (2006) Int J Parasitol 36:505CrossRefGoogle Scholar
  3. 3.
    Fersing C, Basmaciyan L, Boudot C, Pedron J, Hutter S, Cohen A, Castera-Ducros C, Primas N, Laget M, Casanova M, Bourgeade-Delmas S, Piednoel M, Sournia-Saquet A, Mbou VB, Courtioux B, Boutet-Robinet E, Since M, Milne R, Wyllie S, Fairlamb AH, Valentin A, Rathelot P, Verhaeghe P, Vanelle P, Azas N (2019) ACS Med Chem Lett 10:34CrossRefGoogle Scholar
  4. 4.
    Zanutto FV, McAlister E, Tangerina MMP, Fonseca-Santos B, Salles THC, Souza IMO, Brisbe A, Vilegas W, Chorilli M, d’Avila MA, Donnely RF, Foglio MA (2019) J Pharm Sci 108:1177CrossRefGoogle Scholar
  5. 5.
    Li Y, Wu Y (2003) Curr Med Chem 10:2197CrossRefGoogle Scholar
  6. 6.
    Maxmen A (2016) Nat Med 22:220CrossRefGoogle Scholar
  7. 7.
    Mohsin NA, Seebacher W, Faist J, Belaj F, Saf R, Kaiser M, Brun R, Weis R (2014) Monatsh Chem 145:1319CrossRefGoogle Scholar
  8. 8.
    Seebacher W, Wolkinger V, Faist J, Kaiser M, Brun R, Saf R, Bucar F, Gröblacher B, Brantner A, Merino V, Kalia Y, Scapozza L, Perozzo R, Weis R (2015) Bioorg Med Chem Lett 25:1390CrossRefGoogle Scholar
  9. 9.
    Ahmad S, Seebacher W, Faist J, Kaiser M, Brun R, Saf R, Weis R (2016) Arch Pharm Res 39:1391CrossRefGoogle Scholar
  10. 10.
    Mohsin NA, Seebacher W, Faist J, Hochegger P, Kaiser M, Mäser P, Saf R, Weis R (2018) Monatsh Chem 149:99CrossRefGoogle Scholar
  11. 11.
    Acevedo CH, Scotti L, Alves MF, de Diniz FFM, Scotti MT (2019) Lett Org Chem 16:81CrossRefGoogle Scholar
  12. 12.
    Seebacher W, Faist J, Belaj F, Saf R, Kaiser M, Brun R, Weis R (2015) Monatsh Chem 146:1299CrossRefGoogle Scholar
  13. 13.
    Mohsin NA, Seebacher W, Faist J, Hochegger P, Kaiser M, Mäser P, Belaj F, Saf R, Kretschmer N, Alajlani M, Turek I, Brantner A, Bauer R, Bucar F, Weis R (2018) Eur J Med Chem 143:97CrossRefGoogle Scholar
  14. 14.
    Mohsin NA, Seebacher W, Faist J, Kretschmer N, Bauer R, Saf R, Kaiser M, Mäser P, Weis R (2018) Monatsh Chem 149:801CrossRefGoogle Scholar
  15. 15.
    Weis R, Schweiger K, Seebacher W, Belaj F (1998) Tetrahedron 54:14015CrossRefGoogle Scholar
  16. 16.
    Ahmad S, Seebacher W, Wolkinger V, Presser A, Faist J, Kaiser M, Brun R, Saf R, Weis R (2015) Arch Pharm Res 38:1455CrossRefGoogle Scholar
  17. 17.
    Glaser R, Bernstein MA, Balan A (1991) Magn Reson Chem 29:766CrossRefGoogle Scholar
  18. 18.
    Mohsin NA, Seebacher W, Hochegger P, Faist J, Saf R, Kaiser M, Mäser P, Weis R (2019) Med Chem Res 28:742CrossRefGoogle Scholar
  19. 19.
    Peters W (1987) Chemotherapy and drug resistance in malaria, vol 5. Academic Press Inc, New York, p 147Google Scholar
  20. 20.
    Franke-Fayard B, Trueman H, Ramesar J, Mendoza J, Van Der Keur M, Van Der Linden R, Sinden RE, Waters AP, Janse CJ (2004) Mol Biochem Parasitol 137:23CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • Michael Hoffelner
    • 1
  • Markus Petritsch
    • 1
  • Sarfraz Ahmad
    • 2
  • Werner Seebacher
    • 1
    Email author
  • Johanna Dolensky
    • 1
  • Patrick Hochegger
    • 1
  • Marcel Kaiser
    • 3
  • Pascal Mäser
    • 3
  • Robert Saf
    • 4
  • Robert Weis
    • 1
  1. 1.Institute of Pharmaceutical SciencesUniversity of GrazGrazAustria
  2. 2.Department of Chemistry, Faculty of ScienceUniversity of MalayaKuala LumpurMalaysia
  3. 3.Swiss Tropical and Public Health Institute and University of BaselBaselSwitzerland
  4. 4.Institute for Chemistry and Technology of Materials (ICTM)Graz University of TechnologyGrazAustria

Personalised recommendations