Synthesis and antiproliferative evaluation of novel N-arylquinolones

  • Vegard Torp LienEmail author
  • Dag Erlend Olberg
  • Gunnar Hagelin
  • Jo Klaveness
Original Paper


Novel N-aryl-substituted quinolones were evaluated for antiproliferative activity. The chemical modifications were inspired by previously reported cytotoxic agents with structural similarities. Dimethylated anilines displayed the most potent effect in the renal cancer cell line Caki-1 and the breast cancer cell line MDA-MB-231, with GI50 values down to 24 µM. Further evaluation in the NCI60 cell lines revealed growth inhibition up to 50%, with the strongest effect observed in renal and lung cancer cell lines. In silico ADMET evaluation indicated favorable characteristics for both gastrointestinal and CNS uptake. The potential toxic electrophilic α,β-unsaturated carbonyl functionalities were shown to be inert to ethanethiol.

Graphic abstract


Antitumor agents Cancer Heterocycles Structure–activity relationships NCI60 



The National Cancer Institute is acknowledged for the performed cell line studies. The authors are grateful for support received from the Norwegian Medical Cyclotron Center.

Supplementary material

706_2019_2504_MOESM1_ESM.pdf (2.8 mb)
Supplementary material 1 (PDF 2819 kb)


  1. 1.
    Mitscher LA (2005) Chem Rev 105:559CrossRefGoogle Scholar
  2. 2.
    Fedorowicz J, Sączewski J (2018) Monatsh Chem 149:1199CrossRefGoogle Scholar
  3. 3.
    Yadav V, Talwar P (2019) Biomed Pharmacother 111:934CrossRefGoogle Scholar
  4. 4.
    Pankey GA (1991) Am J Med 91:S166CrossRefGoogle Scholar
  5. 5.
    Blum MD, Graham DJ, McCloskey CA (1994) Clin Infect Dis 18:946CrossRefGoogle Scholar
  6. 6.
    Lien VT, Olberg DE, Klaveness J, Gørbitz CH (2017) Acta Crystallogr Sect E 73:441CrossRefGoogle Scholar
  7. 7.
    Lee H-Y, Chang J-Y, Chang L-Y, Lai W-Y, Lai M-J (2011) Org Biomol Chem 9:3154CrossRefGoogle Scholar
  8. 8.
    Lai M-J, Chang J-Y, Lee H-Y, Kuo C-C, Lin M-H, Hsieh H-P, Chang C-Y, Wu J-S, Wu S-Y, Shey K-S, Liou J-P (2011) Eur J Med Chem 46:3623CrossRefGoogle Scholar
  9. 9.
    Wang X, Wang S, Ohkoshi E, Wang L, Hamel E, Qian K, Morris-natschke SL, Lee K, Xie L (2013) Eur J Med Chem 67:196CrossRefGoogle Scholar
  10. 10.
    You X, Zhu D, Lu W, Sun Y, Qiao S, Luo B, Du Y, Pi R, Hu Y, Huang P, Wen S (2018) RSC Adv 8:17183CrossRefGoogle Scholar
  11. 11.
    Barta TE, Barabasz AF, Foley BE, Geng L, Hall SE, Hanson GJ, Jenks M, Ma W, Rice JW, Veal J (2009) Bioorg Med Chem Lett 19:3078CrossRefGoogle Scholar
  12. 12.
    Blecha JE, Anderson MO, Chow JM, Guevarra CC, Pender C, Penaranda C, Zavodovskaya M, Youngren JF, Berkman CE (2007) Bioorg Med Chem Lett 17:4026CrossRefGoogle Scholar
  13. 13.
    Kubo K, Ohyama SI, Shimizu T, Takami A, Murooka H, Nishitoba T, Kato S, Yagi M, Kobayashi Y, Iinuma N, Isoe T, Nakamura K, Iijima H, Osawa T, Izawa T (2003) Bioorg Med Chem 11:5117CrossRefGoogle Scholar
  14. 14.
    National Cancer Institute Accessed 19 June 2019
  15. 15.
    Ramann GA, Cowen BJ (2015) Tetrahedron Lett 56:6436CrossRefGoogle Scholar
  16. 16.
    Bovonsombat P, Rujiwarangkul R, Bowornkiengkai T, Leykajarakul J (2007) Tetrahedron Lett 48:8607CrossRefGoogle Scholar
  17. 17.
    Jyothia D, HariPrasad S (2009) Synlett 14:2309Google Scholar
  18. 18.
    Daina A, Michielin O, Zoete V (2017) Sci Rep 7:42717CrossRefGoogle Scholar
  19. 19.
    Daina A, Zoete V (2016) ChemMedChem 11:1117CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PharmacyUniversity of OsloOsloNorway
  2. 2.Norwegian Medical Cyclotron CenterOsloNorway

Personalised recommendations