Advertisement

Polylactide/polyethylene glycol fibrous mats for local paclitaxel delivery: comparison of drug release into liquid medium and to HEMA-based hydrogel model

  • Zuzana Hampejsova
  • Jan Batek
  • Jakub Sirc
  • Radka Hobzova
  • Zuzana BosakovaEmail author
Original Paper
  • 1 Downloads

Abstract

2-Hydroxyethyl methacrylate (HEMA) hydrogels containing 37% water were prepared to investigate the release of hydrophobic anticancer drug paclitaxel (PTX) from electrospun polylactide (PLA) fibrous mats. The impact of the incorporated amphiphilic polyethylene glycol (PEG) on the drug release was also studied. The release profiles were investigated in various arrangements and compared to release into aqueous media. The nanofibers with added PEG released significantly higher amounts of paclitaxel and for longer time period compared to fibers containing only the hydrophobic drug. When compared various release conditions, significantly higher amount of paclitaxel released to hydrogel compared to aqueous media. HEMA-based hydrogel was found to better approximate in vivo conditions in comparison with commonly used liquid media.

Graphic abstract

Keywords

PLA/PEG fibers Needleless electrospinning Drug release Paclitaxel Gels High pressure liquid chromatography 

Notes

Acknowledgements

We are grateful to Nanovia Ltd. for cooperation in fiber preparation by needleless electrospinning and to the Grant Agency of the Czech Republic [project number 16-04863S] and the Charles University [project number SVV260440], the Ministry of Education, Youth and Sports of the Czech Republic within the National Sustainability Program II [project BIOCEV-FAR LQ1604, “BIOCEV” CZ.1.05/1.1.00/02.0109] for financial support.

References

  1. 1.
    Singla AK, Garg A, Aggarwal D (2002) Int J Pharm 235:179CrossRefGoogle Scholar
  2. 2.
    Krukiewicz K, Zak JK (2016) Mater Sci Eng C Mater Biol Appl 62:927CrossRefGoogle Scholar
  3. 3.
    Polakova L, Sirc J, Hobzova R, Cocarta AI, Hermankova E (2019) Int J Pharm 558:268CrossRefGoogle Scholar
  4. 4.
    Elstad NL, Fowers KD (2009) Adv Drug Deliv Rev 61:785CrossRefGoogle Scholar
  5. 5.
    Ding Q, Li Z, Yang Y, Guo G, Luo F, Chen Z, Yang Y, Qian Z, Shi S (2016) Drug Deliv 23:2677CrossRefGoogle Scholar
  6. 6.
    Ma G, Liu Y, Peng C, Fang D, He B, Nie J (2011) Carbohydr Polym 86:505CrossRefGoogle Scholar
  7. 7.
    Ranganath SH, Wang CH (2008) Biomaterials 29:2996CrossRefGoogle Scholar
  8. 8.
    Hrib J, Sirc J, Hobzova R, Hampejsova Z, Bosakova Z, Munzarova M, Michalek J (2015) Beilstein J Nanotechnol 6:1939CrossRefGoogle Scholar
  9. 9.
    Wang X, Venkatraman SS, Boey FYC, Loo JS, Tan LP (2006) Biomaterials 27:5588CrossRefGoogle Scholar
  10. 10.
    Sirc J, Hampejsova Z, Trnovska J, Kozlik P, Hrib J, Hobzova R, Zajicova A, Holan V, Bosakova Z (2017) Pharm Res 34:1391CrossRefGoogle Scholar
  11. 11.
    Tan LP, Venkatraman SS, Sung PF, Wang XT (2004) Int J Pharm 283:89CrossRefGoogle Scholar
  12. 12.
    Huang CL, Steele TWJ, Widjaja E, Boey FYC, Venkatraman SS, Loo JSC (2013) NPG Asia Mater 5:e54CrossRefGoogle Scholar
  13. 13.
    Steele TW, Huang CL, Widjaja E, Boey FY, Loo JS, Venkatraman SS (2011) Acta Biomater 7:1973CrossRefGoogle Scholar
  14. 14.
    Hobzova R, Hampejsova Z, Cerna T, Hrabeta J, Venclikova K, Jedelska J, Bakowsky U, Bosakova Z, Lhotka M, Vaculin S, Franek M, Steinhart M, Kovarova J, Michalek J, Sirc J (2019) Mater Sci Eng C Mater Biol Appl 98:982CrossRefGoogle Scholar
  15. 15.
    Plch J, Venclikova K, Janouskova O, Hrabeta J, Eckschlager T, Kopeckova K, Hampejsova Z, Bosakova Z, Sirc J, Hobzova R (2018) Macromol Biosci 18:e1800011CrossRefGoogle Scholar
  16. 16.
    Tredan O, Galmarini CM, Patel K, Tannock IF (2007) J Natl Cancer Inst 99:1441CrossRefGoogle Scholar
  17. 17.
    Ronnov-Jessen L, Petersen OW, Bissell MJ (1996) Physiol Rev 76:69CrossRefGoogle Scholar
  18. 18.
    Huijbers IJ, Iravani M, Popov S, Robertson D, Al-Sarraj S, Jones C, Isacke CM (2010) PLoS ONE 5:e9808CrossRefGoogle Scholar
  19. 19.
    Pluen A, Boucher Y, Ramanujan S, McKee TD, Gohongi T, di Tomaso E, Brown EB, Izumi Y, Campbell RB, Berk DA, Jain RK (2001) Proc Natl Acad Sci USA 98:4628CrossRefGoogle Scholar
  20. 20.
    Liang S, Xu J, Weng L, Dai H, Zhang X, Zhang L (2006) J Control Release 115:189CrossRefGoogle Scholar
  21. 21.
    McCabe M (1972) Biochem J 127:249CrossRefGoogle Scholar
  22. 22.
    Blakney AK, Little AB, Jiang Y, Woodrow KA (2016) Drug Deliv 24:582CrossRefGoogle Scholar
  23. 23.
    Liu P, De Wulf O, Laru J, Heikkila T, van Veen B, Kiesvaara J, Hirvonen J, Peltonen L, Laaksonen T (2013) AAPS PharmSciTech 14:748CrossRefGoogle Scholar
  24. 24.
    Bevernage J, Brouwers J, Brewster ME, Augustijns P (2013) Int J Pharm 453:25CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • Zuzana Hampejsova
    • 1
  • Jan Batek
    • 1
  • Jakub Sirc
    • 2
  • Radka Hobzova
    • 2
  • Zuzana Bosakova
    • 1
    Email author
  1. 1.Department of Analytical Chemistry, Faculty of ScienceCharles UniversityPragueCzech Republic
  2. 2.Institute of Macromolecular ChemistryAcademy of Sciences of the Czech RepublicPragueCzech Republic

Personalised recommendations