Monatshefte für Chemie - Chemical Monthly

, Volume 150, Issue 9, pp 1603–1610 | Cite as

Separation of linear and cyclic poly(dimethylsiloxanes) with polymer high-performance liquid chromatography

  • Bernhard DurnerEmail author
  • Thomas Ehmann
  • Frank-Michael Matysik
Original Paper


The growing importance of siloxanes in various industrial areas, e.g., health care, cosmetics, automotive and construction industries requires further method development of analysis techniques. In addition, and complementing gas chromatography analysis, a polymer liquid chromatography method for separation of linear and cyclic (poly)dimethylsiloxanes was developed and optimized. By an appropriate choice of mobile and stationary phase combinations, separations of up to 30 monomeric units were achieved. Therefore, various HPLC columns were investigated concerning physical and chemical properties, e.g., pore size, silica base material, and column functionality. Furthermore, solubility properties of siloxanes in adsorption- and desorption-promoting solvents were investigated and taking these results into account, the separation was optimized applying a mixture of methanol:water (75:25, v/v) and acetone. The findings indicate that precipitation/re-dissolution effects superimposed by adsorption chromatography play an important role for the efficient separationof a high number of monomer units. Besides method development on an analytical scale, linear poly(dimethylsiloxane) oligomers were separated with preparative polymer HPLC. These fractions of single oligomers allow further investigations of different material properties beyond polymer HPLC.

Graphical abstract


High-performance liquid chromatography Macrocycles Oligomers Silicone compounds Linear and cyclic poly(dimethylsiloxanes) 



The authors thank the group Process Chemistry Polymer and Fluids of the Business Unit Basics and Intermediates at Wacker Chemie AG Burghausen for support with silicone oils.


  1. 1.
    Rapra (ed) (2013) Silicone elastomers 2013: 10–12 June, Hilton Munich City, Munich. Smithers Information, Shawbury, Shrewsbury, Shropshire, GermanyGoogle Scholar
  2. 2.
    Lambrecht J, Brünnig M (2012) Advantages of silicones and future challenges in the world of T&D. In: Rapra (ed) Silicone Elastomers 2012: 27–28 March; Berlin, Germany. Smithers Rapra Technology Limited, BerlinGoogle Scholar
  3. 3.
    Noll W (1968) Chemie und Technologie der Silicone. Verlag Chemie GmbH, WeinheimGoogle Scholar
  4. 4.
    Liu Y (ed) (2017) Silicone dispersions. Surfactant science series, vol 159. CRC Press, Boca RatonGoogle Scholar
  5. 5.
    Brothers HM, Boehmer T, Campbell RA (2017) Int J Cosmet Sci 39:580CrossRefPubMedGoogle Scholar
  6. 6.
    Bletsou AA, Asimakopoulos AG, Stasinakis AS (2013) Environ Sci Technol 47:1824CrossRefPubMedGoogle Scholar
  7. 7.
    Belenki BG, Vilenchik LZ (eds) (1983) Modern liquid chromatography of macromolecules. Journal of Chromatography Library, vol 25. Elsevier, AmsterdamGoogle Scholar
  8. 8.
    Berek D (2010) J Sep Sci 33:315CrossRefPubMedGoogle Scholar
  9. 9.
    Striegel AM, Yau WW, Kirkland JJ (2009) Modern size-exclusion liquid chromatography: practice of gel permeation and gel filtration chromatography, 2nd edn. Wiley, HobokenCrossRefGoogle Scholar
  10. 10.
    Krüger R-P, Much H, Schulz G (1999) Monatsh Chem 130:163Google Scholar
  11. 11.
    Macko T, Hunkeler D (2003) Liquid chromatography under critical and limiting conditions: a survey of experimental systems for synthetic polymers. In: Abe A, Albertsson A-C, Cantow H-J (eds) Liquid Chromatography/FTIR Microspectroscopy/Microwave Assisted Synthesis. Springer, BerlinGoogle Scholar
  12. 12.
    Berek D (2016) J Sep Sci 39:93CrossRefPubMedGoogle Scholar
  13. 13.
    Durner B, Ehmann T, Matysik F-M (2018) J Chromatogr A 1564:214CrossRefPubMedGoogle Scholar
  14. 14.
    Pasch H, Trathnigg B (1998) HPLC of polymers. Springer laboratory, SpringerGoogle Scholar
  15. 15.
    Glöckner G (1982) Polymercharakterisierung durch Flüssigkeits-Chromatographie: Chromatographische Methoden. Hüthig, HeidelbergGoogle Scholar
  16. 16.
    Berek D (2010) Polymer HPLC. In: Corradini D (ed) Handbook of HPLC, 2nd edn. Taylor and Francis, Boca Raton, p 447Google Scholar
  17. 17.
    Brun Y, Rasmussen CJ (2017) Interaction polymer chromatography. In: Fanali S, Haddad PR, Poole CF (eds) Liquid chromatography: fundamentals and instrumentation, 2nd edn. Elsevier, Amsterdam, p 275CrossRefGoogle Scholar
  18. 18.
    Durner B, Ehmann T, Matysik F-M (2018) Separation of linear and cyclic poly(dimethylsiloxanes) with interactive chromatography. In: Nesmerak K (ed), Proceedings of the 14th International Students Conference “Modern Analytical Chemistry”, Prague, 20–21 September 2018. Cataloguing in PublicationGoogle Scholar
  19. 19.
    Long W, Horton J (2014) Analysis of positional isomers with Agilent Poroshell 120 PFP columns: application noteGoogle Scholar
  20. 20.
    Valkó K, Snyder LR, Glajch JL (1993) J Chromatogr A 656:501CrossRefGoogle Scholar
  21. 21.
    Kromidas S, Mladek C. HPLC für Neueinsteiger: Accessed 23 Jan 2019
  22. 22.
    Mojsiewicz-Pieńkowska K (2010) J Pharm Biomed Anal 53:503CrossRefPubMedGoogle Scholar
  23. 23.
    LoBrutto R, Kazakevich Y (eds) (2007) HPLC for pharmaceutical scientists. Wiley-Interscience, HobokenGoogle Scholar
  24. 24.
    Philipsen H, Klumperman B, German AL (1996) J Chromatogr A 746:211CrossRefGoogle Scholar
  25. 25.
    Philipsen H, de Cooker MR, Claessens HA, Klumperman B, German AL (1997) J Chromatogr A 761:147CrossRefGoogle Scholar
  26. 26.
    Philipsen H, Oestreich M, Klumperman B, German AL (1997) J Chromatogr A 775:157CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • Bernhard Durner
    • 1
    • 2
    Email author
  • Thomas Ehmann
    • 1
  • Frank-Michael Matysik
    • 2
  1. 1.Wacker Chemie AGBurghausenGermany
  2. 2.Faculty of Chemistry and PharmacyUniversity of RegensburgRegensburgGermany

Personalised recommendations