Advertisement

Palladium-catalyzed carbonylative Sonogashira cross-coupling for the synthesis of alkynones with formic acid as the CO source

  • Xue Lyu
  • Guanglong Sun
  • Yang Zhou
  • Yingying Wang
  • Min Lei
  • Wanying Wu
  • Dean Guo
Original Paper
  • 15 Downloads

Abstract

A practical and efficient palladium-catalyzed carbonylative Sonogashira cross-coupling reaction for the synthesis of alkynones from aryl iodides, alkynes, and formic acid as the CO source has been described. Under the assistance of PPh3/I2, formic acid can be used as the CO source for synthesis of alkynones in moderate–good yields. Furthermore, it is also successfully applied for the modification of natural products, such as vindoline and tabersonin, to obtain the corresponding products.

Graphical abstract

Keywords

Sonogashira cross-coupling Aryl iodide Alkyne Palladium Alkynones 

Notes

Acknowledgements

This work was supported by Special Fund for Strategic Pilot Technology Chinese Academy of Sciences (XDA12040303).

Supplementary material

706_2018_2331_MOESM1_ESM.docx (1.2 mb)
Supplementary material 1 (DOCX 1188 kb)

References

  1. 1.
    Savarin CG, Murry JA, Dormer PG (2002) Org Lett 4:2071CrossRefGoogle Scholar
  2. 2.
    Karpov AS, Müller TJJ (2003) Org Lett 5:3451CrossRefGoogle Scholar
  3. 3.
    Forsyth CJ, Xu J, Nguyen ST, Samdal IA, Briggs LR, Rundberget T, Sandvik M, Miles CO (2006) J Am Chem Soc 128:15114CrossRefGoogle Scholar
  4. 4.
    Marco-Contelles J, de Opazo E (2002) J Org Chem 67:3705CrossRefGoogle Scholar
  5. 5.
    Tietze LF, Singidi RR, Gericke KM, Böckemeier H, Laatsch H (2007) Eur J Org Chem 35:5875CrossRefGoogle Scholar
  6. 6.
    Chang KT, Choi SH, Kim SH, Yoon YJ, Lee WS (2002) J Chem Soc Perkin Trans 1:207Google Scholar
  7. 7.
    D’Souza DM, Müller TJJ (2008) Nat Protoc 3:1660CrossRefGoogle Scholar
  8. 8.
    Abbiati G, Arcadi A, Marinelli F, Rossi E, Verdecchia M (2009) Eur J Org Chem 7:1027CrossRefGoogle Scholar
  9. 9.
    Kel’in AV, Gevorgyan V (2002) J Org Chem 67:95CrossRefGoogle Scholar
  10. 10.
    Grotjahn DB, Van S, Combs D, Lev DA, Schneider C, Rideout M, Meyer C, Hernandez G, Mejorado L (2002) J Org Chem 67:9200CrossRefGoogle Scholar
  11. 11.
    Liu H-L, Jiang H-F, Zhang M, Yao W-J, Zhu Q-H, Tang Z (2008) Tetrahedron Lett 49:3805CrossRefGoogle Scholar
  12. 12.
    Shen J-H, Cheng G-L, Cui X-L (2013) Chem Commun 49:10641CrossRefGoogle Scholar
  13. 13.
    Kel’in AV, Sromek AW, Gevorgyan V (2001) J Am Chem Soc 123:2074CrossRefGoogle Scholar
  14. 14.
    Sakamoto K, Honda E, Ono N, Uno H (2000) Tetrahedron Lett 41:1819CrossRefGoogle Scholar
  15. 15.
    Willy B, Dallos T, Rominger F, Schönhaber J, Müller TJJ (2008) Eur J Org Chem 28:4796CrossRefGoogle Scholar
  16. 16.
    Kalinin VN, Shostakovsky MV, Ponamaryov AB (1990) Tetrahedron Lett 31:4073CrossRefGoogle Scholar
  17. 17.
    Delpech B, Calvo D, Lett R (1996) Tetrahedron Lett 37:1019CrossRefGoogle Scholar
  18. 18.
    Dodero VI, Koll LC, Faraoni MB, Mitchell TN, Podestá JC (2003) J Org Chem 68:10087CrossRefGoogle Scholar
  19. 19.
    Vong BG, Kim SH, Abraham S, Theodorakis EA (2004) Angew Chem Int Ed 43:3947CrossRefGoogle Scholar
  20. 20.
    Trost BM, Ball ZT (2004) J Am Chem Soc 126:13942CrossRefGoogle Scholar
  21. 21.
    Kobayashi T, Tanaka M (1981) J Chem Soc, Chem Commun 7:333CrossRefGoogle Scholar
  22. 22.
    Ahmed MSM, Mori A (2003) Org Lett 5:3057CrossRefGoogle Scholar
  23. 23.
    Liang B, Huang M, You Z, Xiong Z, Lu K, Fathi R, Chen J, Yang Z (2005) J Org Chem 70:6097CrossRefGoogle Scholar
  24. 24.
    Sans V, Trzeciak AM, Luis S, Ziólkowski JJ (2006) Catal Lett 109:37CrossRefGoogle Scholar
  25. 25.
    Liu J, Peng X, Sun W, Zhao Y, Xia C (2008) Org Lett 10:3933CrossRefGoogle Scholar
  26. 26.
    Fusano A, Fukuyama T, Nishitani S, Inouye T, Ryu I (2010) Org Lett 12:2410CrossRefGoogle Scholar
  27. 27.
    Wu X-F, Neumann H, Beller M (2010) Chem Eur J 16:12104CrossRefGoogle Scholar
  28. 28.
    Wu X-F, Sundararaju B, Neumann H, Dixneuf PH, Beller M (2011) Chem Eur J 17:106CrossRefGoogle Scholar
  29. 29.
    Wu X-F, Sundararaju B, Anbarasan P, Neumann H, Dixneuf PH, Beller M (2011) Chem Eur J 17:8014CrossRefGoogle Scholar
  30. 30.
    Wu X-F, Neumann H, Beller M (2011) Org Biomol Chem 9:8003CrossRefGoogle Scholar
  31. 31.
    Wu X-F, Neumann H, Beller M (2011) Angew Chem Int Ed 50:11142CrossRefGoogle Scholar
  32. 32.
    Kim W, Park K, Park A, Choe J, Lee S (2013) Org Lett 15:1654CrossRefGoogle Scholar
  33. 33.
    Natte K, Chen J, Neumann H, Beller M, Wu X-F (2014) Org Biomol Chem 12:5590CrossRefGoogle Scholar
  34. 34.
    Li W, Wu X-F (2015) Org Biomol Chem 13:5090CrossRefGoogle Scholar
  35. 35.
    Sun G, Lei M, Hu L (2016) RSC Adv 6:28442CrossRefGoogle Scholar
  36. 36.
    Hu SD, Taaning RH, Lindhardt AT, Skrydstrup T (2011) J Am Chem Soc 133:18114CrossRefGoogle Scholar
  37. 37.
    Lescot C, Nielsen DU, Makarov IS, Lindhardt AT, Daasbjerg K, Skrydstrup T (2014) J Am Chem Soc 136:6142CrossRefGoogle Scholar
  38. 38.
    Chavan SP, Bhanage BM (2015) Eur J Org Chem 11:2405CrossRefGoogle Scholar
  39. 39.
    Hermange P, Lindhardt AT, Taaning RH, Bjerglund K, Lupp D, Skrydstrup T (2011) J Am Chem Soc 133:6061CrossRefGoogle Scholar
  40. 40.
    Friis SD, Skrydstrup T, Buchwald SL (2014) Org Lett 16:4296CrossRefGoogle Scholar
  41. 41.
    Hosoi K, Nozaki K, Hiyama T (2002) Org Lett 4:2849CrossRefGoogle Scholar
  42. 42.
    Wan Y, Alterman M, Larhed M, Hallberg A (2002) J Org Chem 67:6232CrossRefGoogle Scholar
  43. 43.
    Ko S, Lee C, Choi MG, Na Y, Chang S (2003) J Org Chem 68:1607CrossRefGoogle Scholar
  44. 44.
    Chen J, Feng J-B, Natte K, Wu X-F (2015) Chem Eur J 21:16370CrossRefGoogle Scholar
  45. 45.
    Cacchi S, Fabrizi G, Goggiamani A (2003) Org Lett 5:4269CrossRefGoogle Scholar
  46. 46.
    Cacchi S, Fabrizi G, Goggiamani A (2004) J Comb Chem 6:692CrossRefGoogle Scholar
  47. 47.
    Korsager S, Taaning RH, Skrydstrup T (2013) J Am Chem Soc 135:2891CrossRefGoogle Scholar
  48. 48.
    Hou J, Xie J-H, Zhou Q-L (2015) Angew Chem Int Ed 54:6302CrossRefGoogle Scholar
  49. 49.
    Qi X, Jiang L-B, Li C-L, Li R, Wu X-F (2015) Chem Asian J 10:1870CrossRefGoogle Scholar
  50. 50.
    Qi X, Jiang L-B, Li H-P, Wu X-F (2015) Chem Eur J 21:17650CrossRefGoogle Scholar
  51. 51.
    Qi X, Li C-L, Jiang L-B, Zhang W-Q, Wu X-F (2016) Catal Sci Technol 6:3099CrossRefGoogle Scholar
  52. 52.
    Qi X, Li C-L, Wu X-F (2016) Chem Eur J 22:5835CrossRefGoogle Scholar
  53. 53.
    Jiang L-B, Li R, Li H-P, Qi X, Wu X-F (2016) ChemCatChem 8:1788CrossRefGoogle Scholar
  54. 54.
    Qi X, Li H-P, Wu X-F (2016) Chem Asian J 11:2453CrossRefGoogle Scholar
  55. 55.
    Qi X, Li R, Wu X-F (2016) RSC Adv 6:62810CrossRefGoogle Scholar
  56. 56.
    Jiang L-B, Qi X, Wu X-F (2016) Tetrahedron Lett 57:3368CrossRefGoogle Scholar
  57. 57.
    Ren W, Chang W, Dai J, Shi Y, Li J, Shi Y (2016) J Am Chem Soc 138:14864CrossRefGoogle Scholar
  58. 58.
    Seo Y-S, Kim D-S, Jun C-H (2016) Chem Asian J 11:3508CrossRefGoogle Scholar
  59. 59.
    Peng J-B, Qi X, Wu X-F (2017) Synlett 28:175CrossRefGoogle Scholar
  60. 60.
    Johnson PD, Sohn JH, Rawal VH (2006) J Org Chem 71:7899CrossRefGoogle Scholar
  61. 61.
    Lewin G, Rolland Y, Poisson J (1980) Heterocycles 14:1915CrossRefGoogle Scholar
  62. 62.
    Amatore C, Jutand A (2000) Acc Chem Res 33:314CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiPeople’s Republic of China
  2. 2.University of Chinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations