Synthesis, X-ray structure, and DFT modeling of a new polymeric zinc(II) complex of 2-mercaptonicotinic acid (MntH), {[Zn(Mnt–Mnt)(en)]·H2O}n
- 31 Downloads
Abstract
Two zinc(II) complexes of 2-mercaptonicotinic acid (MntH), {[Zn(Mnt–Mnt)(en)]·H2O}n and [Zn(Mnt–Mnt)(H2O)], were prepared by the reaction of ZnCl2 and MntH in the presence of ethylenediamine (en). They were characterized by elemental analysis, and IR, 1H, 13C NMR and UV–Vis spectroscopic studies. In the presence of en, the sulfur atoms of the MntH ligands were connected and formed a disulfide linkage in the Mnt–Mnt dimer. The single crystal X-ray diffraction analysis of {[Zn(Mnt–Mnt)(en)]·H2O}n complex revealed the polymer structure organization. Each zinc atom is five coordinated in distorted trigonal bipyramidal polyhedron by three oxygen atoms of two bridging Mnt–Mnt ligands and two nitrogen atoms of an en molecule. The vibrational modes, which characterized the carboxylic oxygen coordination of the Mnt–Mnt ligand to Zn(II), were determined by periodic DFT/PAW/PW91 calculations. Molecular structure modeling, vibrational spectra calculations, and natural bond orbital analysis of the monomer and dimer ligands as well as of the Zn(II) complexes were performed at the DFT/TDDFT/mPW1PW91 level to explain the available IR, NMR and UV–Vis spectroscopic data and to confirm the ligand coordination to the metal ion. The formation of disulfide Mnt–Mnt ligand in [Zn(Mnt–Mnt)(H2O)] was confirmed by the absence of the absorption band at 377 nm in the UV–Vis spectrum. The molecular modeling fragment of [Zn(Mnt–MntH)2(H2O)] suggested that the most probable structure is that consisting of five coordinated Zn(II) with one aqueous oxygen and four carboxylic oxygens of two bidentate bound Mnt–Mnt ligands in a polymeric structure.
Graphical abstract
Keywords
Zinc(II) Complexes 2-Mercaptonicotinic acid X-ray structure DFT CalculationsNotes
Acknowledgements
The DFT calculations were performed on the MADARA computer cluster of the Bulgarian Academy of Sciences, supported by Grant RNF01/0110 from the National Science Fund (NSFB). I.G., N.T., and T. Z. thank the National Science Fund of the Bulgarian Ministry of Education and Science for the financial support under Grant no, DH09/9.
Supplementary material
References
- 1.Kaim W, Schwederski B (1994) Bioinorganic chemistry: inorganic elements in the chemistry of life, an introduction and guide. Wiley, New JerseyGoogle Scholar
- 2.Williams RJP (1987) Polyhedron 6:61CrossRefGoogle Scholar
- 3.Sousa SF, Lopes AB, Fernandes PA, Ramos MJ (2009) Dalton Trans 38:7946CrossRefGoogle Scholar
- 4.Maret W (2012) J Inorg Biochem 111:110CrossRefGoogle Scholar
- 5.Auld DS (2001) Biometals 14:271CrossRefGoogle Scholar
- 6.Alberts IL, Nadassy K, Wodak SJ (1998) Protein Sci 7:1700CrossRefGoogle Scholar
- 7.Lipscomb WN, Strater N (1996) Chem Rev 96:2375CrossRefGoogle Scholar
- 8.Strater N, Lipscomb WN, Klabunde T, Krebs B (1996) Angew Chem Int Ed 35:2024CrossRefGoogle Scholar
- 9.Koziol L, Valdez CA, Baker SE, Lau EY, Floyd WC, Wong SE, Satcher JH, Lightstone FC, Aines RD (2012) Inorg Chem 51:6803CrossRefGoogle Scholar
- 10.Ye BH, Li XY, Williams ID, Chen XM (2002) Inorg Chem 41:6426CrossRefGoogle Scholar
- 11.Strater N, Lipscomb WN (1995) Biochem 34:14792CrossRefGoogle Scholar
- 12.Kumar U, Singh M, Thirupathi N (2013) Polyhedron 55:233CrossRefGoogle Scholar
- 13.Vahrenkamp H (2007) Dalton Trans 42:4751CrossRefGoogle Scholar
- 14.Rardin RL, Tolman WB, Lippard SJ (1991) New J Chem 15:417Google Scholar
- 15.Chun H, Dybtsev DN, Kim H, Kim K (2005) Chem Eur J 11:3521CrossRefGoogle Scholar
- 16.Crees RS, Cole ML, Hanton LR, Sumby CJ (2010) Inorg Chem 49:1712CrossRefGoogle Scholar
- 17.Dutta B, Bag P, Florke U, Nag K (2005) Inorg Chem 44:147CrossRefGoogle Scholar
- 18.Sheng GH, Cheng XS, You ZL, Zhu HL (2014) Bull Chem Soc Ethiop 28:315CrossRefGoogle Scholar
- 19.Liu YL, Yue KF, Shan BH, Xu LL, Wang CJ, Wang YY (2012) Inorg Chem Commun 17:30CrossRefGoogle Scholar
- 20.Katsoulakou E, Dermitzaki D, Konidaris KF, Moushi EE, Raptopoulou CP, Psycharis V, Tasiopoulos AJ, Bekiari V, Manessi-Zoupa E, Perlepes SP, Stamatatos TC (2013) Polyhedron 52:467CrossRefGoogle Scholar
- 21.Di Marco VB, Tapparo A, Dolmella A, Bombi GG (2004) Inorg Chim Acta 357:135CrossRefGoogle Scholar
- 22.Goher MAS, Abu-Youssef MAM, Mautner FA (1996) Polyhedron 15:453CrossRefGoogle Scholar
- 23.Abu-Youssef MAM (2005) Polyhedron 24:1829CrossRefGoogle Scholar
- 24.Darawsheh M, Abu Ali H, Abuhijleh AL, Rappocciolo E, Akkawi M, Jaber S, Maloul S, Hussein Y (2014) Eur J Med Chem 82:152CrossRefGoogle Scholar
- 25.Abu Ali H, Darawsheh MD, Rappocciolo E (2013) Polyhedron 61:235CrossRefGoogle Scholar
- 26.Radovanovic L, Rogan J, Poleti D, Milutinovic M, Rodic MV (2016) Polyhedron 112:18CrossRefGoogle Scholar
- 27.Muhammad N, Ikram M, Wadood A, Rehman S, Shujah S, Erum, Ghufran M, Rahim S, Shah M, Schulzke C (2018) Spectrochim Acta A 190:368CrossRefGoogle Scholar
- 28.Akhtar M, Alotaibi MA, Alharthi AI, Zierkiewicz W, Tahir MN, Mazhar M, Isab AA, Monim-ul-Mehboob M, Ahmad S (2017) J Mol Struct 1128:455CrossRefGoogle Scholar
- 29.Alotaibi MA, Alharthi AI, Zierkiewicz W, Akhtar M, Tahir MN, Mazhar M, Isab AA, Ahmad S (2017) J Mol Struct 1133:271CrossRefGoogle Scholar
- 30.Malik MR, Vasylyeva V, Merz K, Metzler-Nolte N, Saleem M, Ali S, Isab AA, Munawar KS, Ahmad S (2011) Inorg Chim Acta 376:207CrossRefGoogle Scholar
- 31.Akhtar M, Tahir MN, Saleem M, Mazhar M, Rauf A, Isab AA, Ahmad S, Nadeem S (2015) Russ J Inorg Chem 60:1568CrossRefGoogle Scholar
- 32.Akhtar M, Alharthi AI, Alotaibi MA, Trendafilova N, Georgieva N, Tahir MN, Mazhar M, Isab AA, Hanif M, Ahmad S (2017) Polyhedron 122:105CrossRefGoogle Scholar
- 33.Ahmad T, Mahmood R, Georgieva I, Zahariev T, Tahir MN, Shaheen MA, Gilani MA, Ahmad S (2018) J Mol Struct 1153:179CrossRefGoogle Scholar
- 34.Ahmad S, Espinosa A, Ahmad T, Sohail M, Isab AA, Saleem M, Hameed A, Monim-ul-Mehboob M, de las Heras E (2015) Polyhedron 85:239CrossRefGoogle Scholar
- 35.Sheldrick GM (2008) Acta Cryst A 64:112CrossRefGoogle Scholar
- 36.Sheldrick GM (2015) Acta Cryst C 71:3CrossRefGoogle Scholar
- 37.Spek AL (2009) Acta Cryst D 65:148CrossRefGoogle Scholar
- 38.Kresse G, Hafner J (1993) Phys Rev B 47:558CrossRefGoogle Scholar
- 39.Kresse G, Hafner J (1994) Phys Rev B 49:14251CrossRefGoogle Scholar
- 40.Kresse G, Furthmuller J (1996) Phys Rev B 54:11169CrossRefGoogle Scholar
- 41.Blochl PE (1994) Phys Rev B 50:17953CrossRefGoogle Scholar
- 42.Kresse G, Joubert D (1999) Phys Rev B 59:1758CrossRefGoogle Scholar
- 43.Baroni S, de Gironcoli S, Dal Corso A, Giannozzi P (2001) Rev Mod Phys 73:515CrossRefGoogle Scholar
- 44.Wu X, Vanderbilt D, Hamann DR (2005) Phys Rev B 72:035105CrossRefGoogle Scholar
- 45.Gajdos M, Hummer K, Kresse G, Furthmuller J, Bechstedt F (2006) Phys Rev B 73:045112CrossRefGoogle Scholar
- 46.Karhanek D, Bucko T, Hafner J (2010) J Phys: Condens Matter 22:265006Google Scholar
- 47.Zachariadis PC, Hadjikakou SK, Hadjiliadis N, Michaelides A, Skoulika S, Ming Y, Yu XL (2003) Inorg Chim Acta 343:361CrossRefGoogle Scholar
- 48.Adamo C, Barone V (1998) J Chem Phys 108:664CrossRefGoogle Scholar
- 49.Barone V, Cossi M (1998) J Phys Chem A 102:1995CrossRefGoogle Scholar
- 50.Cossi M, Rega N, Scalmani G, Barone V (2003) J Comput Chem 24:669CrossRefGoogle Scholar
- 51.Weinhold F, Carpenter JE (1988) J Mol Struct THEOCHEM 42:189CrossRefGoogle Scholar
- 52.Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision D.01. Gaussian, Inc., WallingfordGoogle Scholar
- 53.Andrienko GA, Chemcraft program - graphical software for visualization of quantum chemistry computations, Version 1.8 (build 536b, 01/05/2018); https://www.chemcraftprog.com