Advertisement

Monatshefte für Chemie - Chemical Monthly

, Volume 150, Issue 2, pp 193–205 | Cite as

Removal of Congo red by two new zirconium metal–organic frameworks: kinetics and isotherm study

  • Saeed Farhadi
  • Faranak ManteghiEmail author
  • Reza Tondfekr
Original Paper
  • 21 Downloads

Abstract

Two metal–organic frameworks based on zirconium with high stability were synthesized by the hydrothermal method. Zirconium salt, benzene-1,4-dicarboxylic acid, and benzene-1,3,5-tricarboxylic acid were used to produce Zr6O4(OH)4(BDC)6 and Zr6O4(OH)4(OAc)6(BTC)2 metal–organic frameworks, respectively. The potential of adsorption of Congo red by synthesized metal–organic frameworks was investigated. The results of X-ray diffractometry, Fourier transform infrared spectroscopy, scanning electron microscopy and thermogravimetric analysis methods state that the metal–organic frameworks have a high capacity to adsorb Congo red in a short time. Kinetic and isotherm data of Congo red were discussed using pseudo first- and second-order equations. The results show that adsorption follows the second-order kinetic model. The equilibrium adsorption data of Congo red on the synthesized samples were analyzed by Langmuir, Temkin, and Freundlich isotherm models, suggesting adsorption follows the Langmuir model and provides the maximum adsorption capacity of 340 and 870 mg g−1 for Zr6O4(OH)4(BDC)6 and Zr6O4(OH)4(OAc)6(BTC)2, respectively.

Graphical abstract

Keywords

MOF Transition metals compounds Adsorption Dyes 

Notes

Acknowledgements

We are grateful to the Iran University of Science and Technology for financial support.

References

  1. 1.
    Peng X, Huang D, Odoom-Wubah T, Fu D, Huang J, Qi Q (2014) J Colloid Interface Sci 430:272CrossRefGoogle Scholar
  2. 2.
    Zhou Z, Lin S, Yue T, Lee T-C (2014) J Food Eng 126:133CrossRefGoogle Scholar
  3. 3.
    Rêgo T, Cadaval T, Dotto G, Pinto L (2013) J Colloid Interface Sci 411:27CrossRefGoogle Scholar
  4. 4.
    Cheng B, Le Y, Cai W, Yu J (2011) J Hazard Mater 185:889CrossRefGoogle Scholar
  5. 5.
    Mane VS, Babu PV (2013) J Taiwan Inst Chem Eng 44:81CrossRefGoogle Scholar
  6. 6.
    Li D-P, Zhang Y-R, Zhao X-X, Zhao B-X (2013) Chem Eng J 232:425CrossRefGoogle Scholar
  7. 7.
    Osugi ME, Rajeshwar K, Ferraz ER, de Oliveira DP, Araújo ÂR, Zanoni MVB (2009) Electrochim Acta 54:2086CrossRefGoogle Scholar
  8. 8.
    Mittal A, Thakur V, Mittal J, Vardhan H (2014) Desalin Water Treat 52:227CrossRefGoogle Scholar
  9. 9.
    Feng J, Yang Z, Zeng G, Huang J, Xu H, Zhang Y, Wei S, Wang L (2013) Bioresour Technol 148:414CrossRefGoogle Scholar
  10. 10.
    Haque E, Jun JW, Jhung SH (2011) J Hazard Mater 185:507CrossRefGoogle Scholar
  11. 11.
    Haque E, Lee JE, Jang IT, Hwang YK, Chang J-S, Jegal J, Jhung SH (2010) J Hazard Mater 181:535CrossRefGoogle Scholar
  12. 12.
    Han R, Ding D, Xu Y, Zou W, Wang Y, Li Y, Zou L (2008) Bioresour Technol 99:2938CrossRefGoogle Scholar
  13. 13.
    Belhachemi M, Addoun F (2012) Desalin Water Treat 37:122CrossRefGoogle Scholar
  14. 14.
    Elsherbiny AS, Salem MA, Ismail AA (2012) Chem Eng J 200:283CrossRefGoogle Scholar
  15. 15.
    Chatterjee S, Lee DS, Lee MW, Woo SH (2009) Bioresour Technol 100:2803CrossRefGoogle Scholar
  16. 16.
    Tanthapanichakoon W, Ariyadejwanich P, Japthong P, Nakagawa K, Mukai S, Tamon H (2005) Water Res 39:1347CrossRefGoogle Scholar
  17. 17.
    Joo JB, Park J, Yi J (2009) J Hazard Mater 168:102CrossRefGoogle Scholar
  18. 18.
    Hasan Z, Jeon J, Jhung SH (2012) J Hazard Mater 209:151CrossRefGoogle Scholar
  19. 19.
    Ahmed I, Hasan Z, Khan AS, Jhung SH (2013) Appl Catal B Environ 12:123CrossRefGoogle Scholar
  20. 20.
    Zhu B-J, Yu X-Y, Jia Y, Peng F-M, Sun B, Zhang M-Y, Luo T, Liu JH, Huang X-J (2012) J Phys Chem C 116:8601CrossRefGoogle Scholar
  21. 21.
    Yaghi O, Li H (1995) J Am Chem Soc 117:10401CrossRefGoogle Scholar
  22. 22.
    Hoskins BF, Robson R (1989) J Am Chem Soc 111:5962CrossRefGoogle Scholar
  23. 23.
    Furukawa H, Ko N, Go YB, Aratani N, Choi SB, Choi E, Yazaydin AÖ, Snurr RQ, O’Keeffe M, Kim J (2010) Science 329:424CrossRefGoogle Scholar
  24. 24.
    Liu C, Li T, Rosi NL (2012) J Am Chem Soc 134:18886CrossRefGoogle Scholar
  25. 25.
    Ebrahim AM, Levasseur B, Bandosz TJ (2012) Langmuir 29:168CrossRefGoogle Scholar
  26. 26.
    Liang W, Chevreau H, Ragon F, Southon PD, Peterson VK, D’Alessandro DM (2014) Cryst Eng Commun 16:6530CrossRefGoogle Scholar
  27. 27.
    Li Y, Zhang S, Song D (2013) Angew Chem 125:738CrossRefGoogle Scholar
  28. 28.
    Stroppa A, Barone P, Jain P, Perez-Mato J, Picozzi S (2013) Adv Mater 25:2284CrossRefGoogle Scholar
  29. 29.
    Jin L-N, Qian X-Y, Wang J-G, Aslan H, Dong M (2015) J Colloid Interface Sci 453:270CrossRefGoogle Scholar
  30. 30.
    Huang X-X, Qiu L-G, Zhang W, Yuan Y-P, Jiang X, Xie A-J, Shen Y-H, Zhu J-F (2012) Cryst Eng Commun 14:1613CrossRefGoogle Scholar
  31. 31.
    Moradi S, Dadfarnia S, Haji Shabani A, Emami S (2015) Desalin Water Treat 56:709CrossRefGoogle Scholar
  32. 32.
    Masoomi MY, Morsali A, Junk PC (2015) Cryst Eng Commun 17:6865CrossRefGoogle Scholar
  33. 33.
  34. 34.
    Shaheed MA, Hussein FH (2014) J Nanomater 2014:3CrossRefGoogle Scholar
  35. 35.
    Purnomo V, Fen-Tair L (2015) Torrefaction of biomass in molten salts to obtain useful bioproducts as renewable chemical resources. In: The 10th joint conference on chemistry, September 8–9, 2015, IndonesiaGoogle Scholar
  36. 36.
    Abid HR, Pham GH, Ang H-M, Tade MO, Wang S (2012) J Colloid Interface Sci 366:120CrossRefGoogle Scholar
  37. 37.
    Pérez-Marín A, Zapata VM, Ortuno J, Aguilar M, Sáez J, Lloréns M (2007) J Hazard Mater 139:122CrossRefGoogle Scholar
  38. 38.
    Zhao Q, Yuan W, Liang J, Li J (2013) Int J Hydrog Energy 38:13104CrossRefGoogle Scholar
  39. 39.
    Kalhori EM, Yetilmezsoy K, Uygur N, Zarrabi M, Shmeis RMA (2013) Appl Surf Sci 287:428CrossRefGoogle Scholar
  40. 40.
    Yagub MT, Sen TK, Afroze S, Ang HM (2014) Adv Colloid Interface 209:17284CrossRefGoogle Scholar
  41. 41.
    Aroua MK, Leong S, Teo L, Yin CY, Daud WMAW (2008) Bioresour Technol 99:5786CrossRefGoogle Scholar
  42. 42.
    Zhou Y, Jin Q, Zhu T, Akama Y (2011) J Hazard Mater 187:303CrossRefGoogle Scholar
  43. 43.
    Rong X, Qiu F, Qin J, Zhao H, Yan J, Yang D (2015) J Ind Eng Chem 26:354CrossRefGoogle Scholar
  44. 44.
    Debnath S, Maity A, Pillay K (2014) J Environ Chem Eng 2:260CrossRefGoogle Scholar
  45. 45.
    Hou H, Zhou R, Wu P, Wu L (2012) Chem Eng J 211:336CrossRefGoogle Scholar
  46. 46.
    Mahapatra A, Mishra B, Hota G (2013) Ceram Int 39:5443CrossRefGoogle Scholar
  47. 47.
    Wang L, Wang A (2007) J Hazard Mater 147:979CrossRefGoogle Scholar
  48. 48.
    Vimonses V, Lei S, Jin B, Chow CW, Saint C (2009) Chem Eng J 148:354CrossRefGoogle Scholar
  49. 49.
    Treybal RE (1987) Mass transfer operations. McGraw Hill, New YorkGoogle Scholar
  50. 50.
    Chatterjee S, Lee MW, Woo SH (2010) Bioresour Technol 101:1800CrossRefGoogle Scholar
  51. 51.
    Xu Y, Jin J, Li X, Han Y, Meng H, Song C, Zhang X (2015) Microchim Acta 182:2313CrossRefGoogle Scholar
  52. 52.
    Weber WJ, Morris JC (1962) International conference on water pollution symposium, vol 2. Pergamon, Oxford, p 231Google Scholar
  53. 53.
    Itodo AU, Abdulrahman FW, Hassan LG, Maigandi SA, Itodo HU (2012) Researcher 2:74Google Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • Saeed Farhadi
    • 1
  • Faranak Manteghi
    • 1
    Email author
  • Reza Tondfekr
    • 1
  1. 1.Department of ChemistryIran University of Science and TechnologyNarmakIran

Personalised recommendations