Monatshefte für Chemie - Chemical Monthly

, Volume 150, Issue 2, pp 363–369 | Cite as

Activity and stability of lysozyme obtained from Rutilus frisii kutum in the presence of nickel oxide nanoparticles

  • Behnaz Tolouei-Nia
  • Mahmoud R. AghamaaliEmail author
  • Ahmad Asoodeh
  • Mohsen Mehregan
Original Paper


The aim of this study was to examine the effects of nickel oxide nanoparticles on the activity and thermal stability of lysozyme obtained from Rutilus frisii kutum. The synthesis of the nanoparticles was performed by the chemical co-precipitation method. To evaluate the synthesis process, X-ray diffraction, scanning electron microscope, and Fourier transform infrared spectroscopy were evaluated. The size of the nanoparticles was in the range of 20–30 nm with a spherical morphology and gray–black color. To determine thermal stability, the fraction unfolded curve and ΔG° as a function of lysozyme temperature in the absence and presence of the nanoparticles were obtained. With respect to Tm at Δ = 0, we obtained Tm of lysozyme from 314 K in the absence of the nanoparticles to 332 K in the presence of 0.0001 g/cm3 nickel oxide nanoparticles. Therefore, thermal stability of lysozyme was increased with the rise of nanoparticles’ concentrations. The reversible unfolding as a result of heating lysozyme was observed at Tm = 318 K. Kinetic parameters, Km and Vmax, of the enzyme were also determined from 0.007 g/cm3 and 172 units/min in the absence of the nanoparticles to 0.005 g/cm3 and 104.166 units/min in the presence of 0.0001 g/cm3 nickel oxide nanoparticles, respectively. The emission intensity of lysozyme decreased in the presence of the nanoparticles, while its absorption intensity increased without any shift at 340 and 280 nm, respectively. Consequently, the nickel oxide nanoparticles can interact with lysozyme that results in decreasing its enzymatic activity due to changes in its active site.

Graphical abstract


Nanostructures Enzymes UV–Vis spectroscopy Fluorescence spectroscopy 



Financial support of this study under the Grant no. 134396/KM by the Caspian Sea Basin Research Center of Guilan is gratefully acknowledged. The authors would like to offer special thanks to research deputy of the University of Guilan.

Supplementary material

706_2018_2323_MOESM1_ESM.pdf (162 kb)
Supplementary material 1 (PDF 161 kb)


  1. 1.
    Simonet BM, Valcárcel M (2009) Anal Bioanal Chem 393:17CrossRefGoogle Scholar
  2. 2.
    Raghupathi KR, Koodali RT, Manna AC (2011) Langmuir 27:4020CrossRefGoogle Scholar
  3. 3.
    Salata OV (2004) J Nanobiotechnol 2:2CrossRefGoogle Scholar
  4. 4.
    Cheng YH, Lai CM, Lin KS, Wang SS (2017) Colloids Surf B 151:344CrossRefGoogle Scholar
  5. 5.
    Roco MC (2005) Environ Sci Technol 39:5CrossRefGoogle Scholar
  6. 6.
    Taghavi SM, Momenpour M, Azarian M, Ahmadian M, Souri F, Taghavi SA, Sadeghain M, Karchani M (2013) Electron Physician 5:706PubMedPubMedCentralGoogle Scholar
  7. 7.
    Aillon KL, Xie Y, El-Gendy N, Berkland CJ, Forrest ML (2010) Adv Drug Deliv 61:457CrossRefGoogle Scholar
  8. 8.
    Zhu Y, Zhao Q, Li Y, Cai X, Li W (2006) J Nanosci Nanotechnol 6:1357CrossRefGoogle Scholar
  9. 9.
    Templeton RC, Ferguson PL, Washburn KM, Scrivens WA, Chandler GT (2006) Environ Sci Technol 40:7387CrossRefGoogle Scholar
  10. 10.
    Saurabh S, Sahoo PK (2008) Aquacult Res 39:223CrossRefGoogle Scholar
  11. 11.
    Callewaert L, Michiels CW (2010) J Biosci 35:127CrossRefGoogle Scholar
  12. 12.
    Momeni L, Shareghi B, Saboury AA (2017) J Biomol Struct Dyn 35:1381CrossRefGoogle Scholar
  13. 13.
    Lee S, Hwang SH, Jeong J, Han Y, Kim SH, Lee DK, Lee HS, Chung ST, Jeong J, Roh C, Huh YS, Cho WS (2016) Part Fibre Toxicol 13:30CrossRefGoogle Scholar
  14. 14.
    Capasso L, Camatini M, Gualtieri M (2014) Toxicol Lett 226:28CrossRefGoogle Scholar
  15. 15.
    Duan WX, He MD, Mao L, Qian FH, Li YM, Pi HF, Liu C, Zhou Z (2015) Toxicol Appl Pharmacol 286:80CrossRefGoogle Scholar
  16. 16.
    Sudha N, Yousuf S, Israel EVMV, Paulraj MS, Dhanaraj P (2016) Colloids Surf B 141:423CrossRefGoogle Scholar
  17. 17.
    Natesan S, Sowrirajan C, Yousuf S, Enoch IV (2015) Carbohydr Polym 115:589CrossRefGoogle Scholar
  18. 18.
    Chandrasekaran S, Sudha N, Premnath D, Enoch IV (2015) J Biomol Struct Dyn 33:1945CrossRefGoogle Scholar
  19. 19.
    Sudha N, Israel VM (2015) J Solut Chem 44:1367CrossRefGoogle Scholar
  20. 20.
    Hu X, Yu Z, Liu R (2013) Spectrochim Acta A 108:50CrossRefGoogle Scholar
  21. 21.
    Vignesh G, Manojkumar Y, Sugumar K, Arunachalam S (2015) J Lumin 157:297CrossRefGoogle Scholar
  22. 22.
    Wu L, Ma B, Sheng Y, Wang W (2008) J Mol Struct 891:167CrossRefGoogle Scholar
  23. 23.
    Liu Y, Liu R (2012) Food Chem Toxicol 50:3298CrossRefGoogle Scholar
  24. 24.
    Shang W, Nuffer JH, Muñiz-Papandrea VA, Colón W, Siegel RW, Dordick JS (2009) Small 5:470CrossRefGoogle Scholar
  25. 25.
    Chakraborti S, Chatterjee T, Joshi P, Poddar A, Bhattacharyya B, Singh SP, Chakrabarti P (2010) Langmuir 26:3506CrossRefGoogle Scholar
  26. 26.
    Chakraborti S, Sarwar S, Chakrabarti P (2013) J Phys Chem 11:13397CrossRefGoogle Scholar
  27. 27.
    Dijk EV, Hoogeveen A, Abeln S (2015) PLoS Comput Biol 11:1004277CrossRefGoogle Scholar
  28. 28.
    Eisenthal R, Danson MJ, Hough DW (2007) Trends Biotechnol 25:247CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • Behnaz Tolouei-Nia
    • 1
  • Mahmoud R. Aghamaali
    • 1
    Email author
  • Ahmad Asoodeh
    • 2
  • Mohsen Mehregan
    • 3
  1. 1.Department of Biology, Faculty of ScienceUniversity of GuilanRashtIran
  2. 2.Department of Chemistry, Faculty of ScienceFerdowsi University of MashhadMashhadIran
  3. 3.Department of Physics, Faculty of SciencePayame Noor UniversityTehranIran

Personalised recommendations