Advertisement

Monatshefte für Chemie - Chemical Monthly

, Volume 150, Issue 2, pp 183–192 | Cite as

Electrochemical study of adsorption and electrooxidation of 4,4′-biphenol on the glassy carbon electrode: determination of the orientation of adsorbed molecules

  • Hassan Shayani-jamEmail author
Original Paper
  • 80 Downloads

Abstract

Electrochemical oxidation of 4,4′-biphenol has been studied in aqueous solution and acetone/water mixtures using cyclic voltammetry and chronocoulometry. Obtained results show that diffusion and adsorption currents are mixed (weak adsorption). Weak adsorption was studied and proven by various methods. Semi-integral analysis and chronocoulometry were used as effective methods for determining surface coverage (i.e., initial surface excess) from voltammogram and chronocoulogram in the presence of weak adsorption. An initial surface excess (Γ*) was determined to be 0.43 ± 0.02 nmol/cm2 for 4,4′-biphenol and 0.67 ± 0.03 nmol/cm2 for 4,4′-diphenoquinone by semi-integration and confirmed using chronocoulometry. A good agreement was observed between the results suggested by the applied methods. Eventually, the orientation of 4,4′-biphenol and 4,4′-diphenoquinone molecules adsorbed from solution onto the glassy carbon electrode was determined. Comparison of initial surface excess measurements with values calculated for various possible molecular orientations indicates that the dominant orientations of the adsorbed molecules (4,4′-biphenol and 4,4′-diphenoquinone) are edgewise. Calculations were based on covalent and Van der Waals radii as tabulated by Pauling.

Graphical abstract

Keywords

4,4′-Biphenol Electrochemical oxidation Weak adsorption Semi-integral analysis Edgewise orientation 

Supplementary material

706_2018_2318_MOESM1_ESM.docx (215 kb)
Supplementary material 1 (DOCX 214 kb)

References

  1. 1.
    Li J-R, Kuppler RJ, Zhou H-C (2009) Chem Soc Rev 38:1477CrossRefGoogle Scholar
  2. 2.
    Bowker M (1998) The basis and applications of heterogeneous catalysis. Oxford University Press, OxfordGoogle Scholar
  3. 3.
    Dabrowski A, Curie S (1999) Adsorption and its applications in industry and environmental protection. Elsevier, DordrechtGoogle Scholar
  4. 4.
    Gun’ko V, Blitz J, Zarko V, Turov V, Pakhlov E, Oranska O, Goncharuk E, Gornikov Y, Sergeev V, Kulik T (2009) J Colloid Interface Sci 330:125CrossRefGoogle Scholar
  5. 5.
    Ferreira AF, Santos JC, Plaza MG, Lamia N, Loureiro JM, Rodrigues AE (2011) Chem Eng J 167:1CrossRefGoogle Scholar
  6. 6.
    Geier SJ, Mason JA, Bloch ED, Queen WL, Hudson MR, Brown CM, Long JR (2013) Chem Sci 4:2054CrossRefGoogle Scholar
  7. 7.
    Hemmat M, Rahbar-Kelishami A, Vakili M (2018) Int J Environ Sci Technol 15:2213CrossRefGoogle Scholar
  8. 8.
    Zhu C, Liu P, Mathew AP (2017) ACS Appl Mater Interfaces 9:21048CrossRefGoogle Scholar
  9. 9.
    Ray S, Takafuji M, Ihara H (2013) RSC Adv 3:23664CrossRefGoogle Scholar
  10. 10.
    Yoon H, Na S-H, Choi J-Y, Latthe SS, Swihart MT, Al-Deyab SS, Yoon SS (2014) Langmuir 30:11761CrossRefGoogle Scholar
  11. 11.
    Ray PZ, Shipley HJ (2015) RSC Adv 5:29885CrossRefGoogle Scholar
  12. 12.
    Gil A, Assis F, Albeniz S, Korili S (2011) Chem Eng J 168:1032CrossRefGoogle Scholar
  13. 13.
    Webley PA (2014) Adsorption 20:225CrossRefGoogle Scholar
  14. 14.
    Comninellis C, Pulgarin C (1993) J Appl Electrochem 23:108CrossRefGoogle Scholar
  15. 15.
    Lahrich S, Hammani H, Boumya W, Loudiki A, Farahi A, Achak M, Bakasse M, El Mhammedi M (2016) Electroanalysis 28:1012CrossRefGoogle Scholar
  16. 16.
    Dohare P, Quraishi M, Obot I (2018) J Chem Sci 130:8CrossRefGoogle Scholar
  17. 17.
    Adekunle AS, Pillay J, Ozoemena KI (2008) Electroanalysis 20:2587CrossRefGoogle Scholar
  18. 18.
    Yoshimoto S, Itaya K (2013) Annu Rev Anal Chem 6:213CrossRefGoogle Scholar
  19. 19.
    Stenina E, Sviridova L, Krivenko A, Romanova L, Eremenko L (2003) Russ J Electrochem 39:1017CrossRefGoogle Scholar
  20. 20.
    Unni B, Simon S, Burgess IJ (2015) Langmuir 31:9882CrossRefGoogle Scholar
  21. 21.
    Sluyters-Rehbach M, Sluyters J (1975) J Electroanal Chem Interfacial Electrochem 65:831CrossRefGoogle Scholar
  22. 22.
    Bowling R, McCreery RL (1988) Anal Chem 60:605CrossRefGoogle Scholar
  23. 23.
    Petersen RA, Evans DH (1987) J Electroanal Chem Interfacial Electrochem 222:129CrossRefGoogle Scholar
  24. 24.
    Campos R, Ferapontova EE (2014) Electrochim Acta 126:151CrossRefGoogle Scholar
  25. 25.
    Beltrán-Prieto JC, Slavík R, Kolomazník K (2014) Int J Electrochem Sci 10:6910Google Scholar
  26. 26.
    Bond AM, Miao W, Raston CL (2000) J Phys Chem B 104:2320CrossRefGoogle Scholar
  27. 27.
    Anson FC (1966) Anal Chem 38:54CrossRefGoogle Scholar
  28. 28.
    Bard AJ, Faulkner LR (2000) Electrochemical methods: fundamentals and applications. Wiley, New YorkGoogle Scholar
  29. 29.
    Xiao-Ping W, Lan Z, Wen-Rong L, Jian-Ping D, Hong-Qing C, Guo-Nan C (2002) Electroanalysis 14:1654CrossRefGoogle Scholar
  30. 30.
    Freund MS, Brajter-Toth A (1992) J Phys Chem 96:9400CrossRefGoogle Scholar
  31. 31.
    Bentley CL, Bond AM, Hollenkamp AF, Mahon PJ, Zhang J (2013) Anal Chem 85:2239CrossRefGoogle Scholar
  32. 32.
    Maldonado S, Morin S, Stevenson KJ (2006) Analyst 131:262CrossRefGoogle Scholar
  33. 33.
    Shayani-Jam H, Nematollahi D (2011) Electrochim Acta 56:9311CrossRefGoogle Scholar
  34. 34.
    Fraser DM (1994) Anal Lett 27:2039CrossRefGoogle Scholar
  35. 35.
    Niazi A, Pourghobadi Z, Nematollahi D, Beiginejad H (2014) J Electrochem Soc 161:H284CrossRefGoogle Scholar
  36. 36.
    Batsanov S (2001) Inorg Mater 37:871CrossRefGoogle Scholar
  37. 37.
    Shayani-Jam H, Nematollahi D (2010) Chem Commun 46:409CrossRefGoogle Scholar
  38. 38.
    Wopschall RH, Shain I (1967) Anal Chem 39:1514CrossRefGoogle Scholar
  39. 39.
    Wopschall RH, Shain I (1967) Anal Chem 39:1535CrossRefGoogle Scholar
  40. 40.
    Oldham KB (1972) Anal Chem 44:196CrossRefGoogle Scholar
  41. 41.
    Goto M, Oldham KB (1973) Anal Chem 45:2043CrossRefGoogle Scholar
  42. 42.
    Dalrymple-Alford P, Goto M, Oldham KB (1977) Anal Chem 49:1390CrossRefGoogle Scholar
  43. 43.
    Oldham KB (1986) Anal Chem 58:2296CrossRefGoogle Scholar
  44. 44.
    Mahon PJ, Oldham KB (1998) J Electroanal Chem 445:179CrossRefGoogle Scholar
  45. 45.
    Imbeaux J, Savéant J (1973) J Electroanal Chem Interfacial Electrochem 44:169CrossRefGoogle Scholar
  46. 46.
    Oldham KB (1986) J Chem Soc Faraday Trans 1(82):1099CrossRefGoogle Scholar
  47. 47.
    Klička R (1998) J Electroanal Chem 455:253CrossRefGoogle Scholar
  48. 48.
    Laviron E (1974) J Electroanal Chem Interfacial Electrochem 52:395CrossRefGoogle Scholar
  49. 49.
    Leddy J, Bard AJ (1985) J Electroanal Chem Interfacial Electrochem 189:203CrossRefGoogle Scholar
  50. 50.
    Bertram R (1970) Angew Chem 82:820CrossRefGoogle Scholar
  51. 51.
    Khazalpour S, Nematollahi D (2014) RSC Adv 4:8431CrossRefGoogle Scholar
  52. 52.
    Beginejad H, Nematollahi D, Varmaghani F, Shayani-Jam H (2013) Monatsh Chem 144:1481CrossRefGoogle Scholar
  53. 53.
    Soriaga MP, Hubbard AT (1982) J Am Chem Soc 104:3937CrossRefGoogle Scholar
  54. 54.
    Soriaga MP, Wilson PH, Hubbard AT, Benton CS (1982) J Electroanal Chem Interfacial Electrochem 142:317CrossRefGoogle Scholar
  55. 55.
    Pauling L (1960) The nature of the chemical bond and the structure of molecules and crystals: an introduction to modern structural chemistry. Cornell University Press, IthacaGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of ScienceUniversity of ZanjanZanjanIran

Personalised recommendations