Monatshefte für Chemie - Chemical Monthly

, Volume 150, Issue 2, pp 283–294 | Cite as

Synthesis approach and biological activity evaluation of a series of 1,3,2-oxazaphosphole-2-oxides against inflammation and nociception

  • Wafaa M. AbdouEmail author
  • Eman SabryEmail author
  • Abeer A. Shaddy
Original Paper


In the present work, we synthesized a series of substituted benzoxazaphosphole-2-oxides in high yields (68–84%). The approach involved the preparation of oxazaphospholo-2-oxide monochloride, which is the key substrate, followed by its treatment with amino-, hydroxyl-, and thiolocompounds under mild conditions to afford the corresponding cyclophosphamide, cyclophosphamidate, and cyclophosphathioamidate groups as target products. Lipophilicity prediction and in vivo antinociceptive and antiinflammatory properties of new molecules were determined. Out of 14 tested compounds, the most hydrophobic compounds were found to be also of the highest antinociceptive and the antiinflammatory effects compared with reference drugs ibuprofen and indomethacin. The pharmacological results also showed that three candidates from the cyclophosphamide group are more active as antiinflammatory agents than the reference drug at all the successive time intervals.

Graphical abstract


Antiinflammation Antinociception Lipophilicity measurement Substituted 1,3,2-oxazaphosphole-2-oxides synthesis 



Authors like to thank the National Research Centre, Dokki, Cairo Egypt (project # 10010340) for financial support. Authors also like to thank the Central Lab, School of Pharmacy, Alexandria University, Egypt for taking care of biological assays.


  1. 1.
    Westheimer FH (1987) Science 235:1173PubMedCrossRefGoogle Scholar
  2. 2.
    Klimek M, Lejczak B, Kafarski P, Forlani G (2001) Pest Manag Sci 57:815PubMedCrossRefGoogle Scholar
  3. 3.
    Wardle NJ, Bligh SWA, Hudson HR (2005) Curr Org Chem 9:1803CrossRefGoogle Scholar
  4. 4.
    Natai I, Manier ML, Hachey DL, Bachmann BO (2005) Org Lett 7:2763CrossRefGoogle Scholar
  5. 5.
    Kmiecik N, Klimek-Ochab M, Brzezińska-Rodak M, Majewska P, Żymańczyk-Duda E (2013) Biotechnol Res Int 2013:927361PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Brassfield HA, Jacobson RA, Verkade JG (1975) J Am Chem Soc 97:4143PubMedCrossRefGoogle Scholar
  7. 7.
    Gilard V, Martino R, Malet-Martino M, Niemeyer U, Pohl J (1999) J Med Chem 42:2542PubMedCrossRefGoogle Scholar
  8. 8.
    Morita I, Kunimoto K, Tsuda M, Tada S, Kise M, Kimura K (1987) Chem Pharm Bull 35:4144PubMedCrossRefGoogle Scholar
  9. 9.
    Hannessian S, Galeotti N, Rosen P, Olva G, Babu S (1994) Bioorg Med Chem 23:2763CrossRefGoogle Scholar
  10. 10.
    Rademacher TW, Parekh RB, Dwek RA (1988) Annu Rev Biochem 57:785PubMedCrossRefGoogle Scholar
  11. 11.
    Hewitt DG, Newland GL (1977) Aust J Chem 30:579CrossRefGoogle Scholar
  12. 12.
    Morgan BP, Scholtz JM, Ballinger MD, Zipkin ID, Bartlett PA (1991) J Am Chem Soc 113:297CrossRefGoogle Scholar
  13. 13.
    Mader MM, Bartlett PA (1997) Chem Rev 97:1281PubMedCrossRefGoogle Scholar
  14. 14.
    Stewart JD, Liotta LJ, Benkovic SJ (1993) Acc Chem Res 26:396CrossRefGoogle Scholar
  15. 15.
    Benkovic SJ, Napper AD, Lerner RA (1988) Proc Natl Acad Sci USA 85:5355PubMedCrossRefGoogle Scholar
  16. 16.
    Abdou WM, Bekheit MS, Barghash RF (2016) Monatsh Chem 147:1797CrossRefGoogle Scholar
  17. 17.
    Barghash RF, Ganoub NA, Abdou WM (2014) Monatsh Chem 145:1621CrossRefGoogle Scholar
  18. 18.
    Abdou WM, Ganoub NA, Sabry E (2013) Beilstein J Org Chem 9:1730PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Abdou WM, Barghash RF, Khidre RE (2013) Monatsh Chem 144:1233CrossRefGoogle Scholar
  20. 20.
    Sediek AA, Shaddy AA, Abdou WM (2011) J Heterocycl Chem 48:1258CrossRefGoogle Scholar
  21. 21.
    Abdou WM, Kamel AA, Shaddy AA (2010) Eur J Med Chem 45:5217PubMedCrossRefGoogle Scholar
  22. 22.
    Abdou WM, Shaddy AA, Sediek AA (2009) J Chem Res 43:236–252Google Scholar
  23. 23.
    Abdou WM, Salem MAI, Sediek AA (2005) Arkivoc 14:102Google Scholar
  24. 24.
    Abdou WM, Mahran MR (1986) Phosphorus Sulfur Relat Elem 26:119CrossRefGoogle Scholar
  25. 25.
    Kumar D, Patel G, Johnson EO, Shah K (2009) Bioorg Med Chem Lett 19:2739PubMedCrossRefGoogle Scholar
  26. 26.
    Vinšová J, Horák V, Buchta V, Kaustová J (2005) Molecules 10:783PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Abdou WM, Barghash RF, Bekheit MS (2017) J Heterocycl Chem 54:923CrossRefGoogle Scholar
  28. 28.
    Abdou WM, Barghash RF, Sediek AA (2012) Eur J Med Chem 57:362PubMedCrossRefGoogle Scholar
  29. 29.
    Varun BV, Prabhu KR (2014) J Org Chem 79:9655PubMedCrossRefGoogle Scholar
  30. 30.
    Emsley J, Hall D (1976) 31P NMR and vibrational spectra of phosphorus compounds. In: The Chemistry of Phosphorus. Harper and Row, London, UK, chapter 3, p 77Google Scholar
  31. 31.
    Hartmann T, Schmitt J (2004) Drug Disc Today Technol 1:431CrossRefGoogle Scholar
  32. 32.
    Wils P, Warnery A, Phung-Ba V, Legrain S, Scherman D (1994) J Pharmacol Exp Ther 269:654PubMedGoogle Scholar
  33. 33.
    Leeson PD, Springthorpe B (2007) Nat Rev Drug Discov 6:881PubMedCrossRefGoogle Scholar
  34. 34.
    Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (1997) Adv Drug Deliv Rev 23:3CrossRefGoogle Scholar
  35. 35.
    Kitamura T, Itoh M, Noda T, Matsuura M, Wakabayashi K (2004) Int J Cancer 109:576PubMedCrossRefGoogle Scholar
  36. 36.
    Bansal E, Srivastava VK, Kumar A (2001) Eur J Med Chem 36:81PubMedCrossRefGoogle Scholar
  37. 37.
    Quntar AA, Gallily R, Katzavian G, Srebnik M (2007) Eur J Pharm 556:9CrossRefGoogle Scholar
  38. 38.
    Kảrber G (1931) Archiv Exp Pathol Pharmakol 162:480CrossRefGoogle Scholar
  39. 39.
    Venkateswarlu C, Satynarayana PVV, Nageswara Rao CV, Naga Raju C (2012) Indian J Chem 51B:521Google Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Chemical Industries Research DivisionNational Research CentreDokkiEgypt

Personalised recommendations