Monatshefte für Chemie - Chemical Monthly

, Volume 149, Issue 12, pp 2145–2152 | Cite as

A support vector machine analysis to predict density of mixtures of methanol and six ionic liquids

  • Amir Golparvar
  • Alireza Bahreini
  • Abouzar Choubineh
  • David A. WoodEmail author
Original Paper


Ionic liquids (ILs) are typically mixed together and/or with conventional solvents, and other organic and inorganic compounds to inhibit unfavorable characteristics. Methanol is a widely used solvent and additive in many industrial applications and can be beneficially combined with ILs. Ionic liquids in isolation have some intrinsic disadvantages such as high viscosity. Pumping viscous liquids is a challenge for most industrial applications. This undesirable feature is typically tackled by combining ILs with specific solvents. Here, the binary attributes of IL–solvent combinations are assessed and correlated utilizing 731 data records from published sources. A support vector machine (SVM) algorithm is applied to establish reliable correlations between binary density of the IL systems and the methanol component they contain. Error analysis of the results suggests that the proposed SVM model is highly reliable for the purpose of determining the density of IL–methanol systems with a high degree of accuracy such as coefficient of determination (\( \bar{R} \)) of greater than 0.99.

Graphical abstract


Ionic liquid–methanol mixtures Artificial intelligence Binary density Correlation accuracy statistics 



The authors wish to express special thanks to Mr. Elias Khalafi for his help.

Supplementary material

706_2018_2297_MOESM1_ESM.xlsx (42 kb)
Supplementary material 1 (XLSX 41 kb)


  1. 1.
    Shojaee SA, Hezave ZA, Lashkarbolooki M, Shafipour ZS (2014) Chem Ind Chem Eng Q 20:325CrossRefGoogle Scholar
  2. 2.
    Welton T (1999) Chem Rev 99:2071CrossRefGoogle Scholar
  3. 3.
    Wasserscheid P, Welton T (eds) (2008) Ionic liquids in synthesis. Wiley, WeinheimGoogle Scholar
  4. 4.
    Ohno H (ed) (2011) Electrochemical Aspects of Ionic Liquids, 2nd edn. Wiley, New YorkGoogle Scholar
  5. 5.
    Najdanovic-Visak V, Esperança JM, Rebelo LP, da Ponte MN, Guedes HJ, Seddon KR, Szydlowski J (2002) Phys Chem Chem Phys 4:1701CrossRefGoogle Scholar
  6. 6.
    Lehmann J, Rausch MH, Leipertz A, Fröba AP (2010) J Chem Eng Data 55:4068CrossRefGoogle Scholar
  7. 7.
    Wang Z, Fu L, Xu H, Shang Y, Zhang L, Zhang J (2012) J Chem Eng Data 57:1057CrossRefGoogle Scholar
  8. 8.
    Yu Z, Gao H, Wang H, Chen L (2012) J Solut Chem 41:173CrossRefGoogle Scholar
  9. 9.
    Qian W, Xu Y, Zhu H, Yu C (2012) J Chem Thermodyn 49:87CrossRefGoogle Scholar
  10. 10.
    Cortes C, Vapnik V (1995) Mach Learn 20:273Google Scholar
  11. 11.
    Tyagi S, Panigrahi SK (2017) Appl Artif Intell 31:209CrossRefGoogle Scholar
  12. 12.
    Mashford J, De Silva D, Burn S, Marney D (2012) Appl Artif Intell 26:429CrossRefGoogle Scholar
  13. 13.
    Yang S, Lu W, Chen N, Hu Q (2005) J Mol Struct Theochem 719:119CrossRefGoogle Scholar
  14. 14.
    Lind P, Maltseva T (2003) J Chem Inf Comput Sci 43:1855CrossRefGoogle Scholar
  15. 15.
    Liu HX, Xue CX, Zhang RS, Yao XJ, Liu MC, Hu ZD, Fan BT (2004) J Chem Inf Comput Sci 44:1979CrossRefGoogle Scholar
  16. 16.
    Lashkarbolooki M, Hezave AZ, Babapoor A (2013) Korean J Chem Eng 30:213CrossRefGoogle Scholar
  17. 17.
    Schalkoff RJ (1997) Artificial neural networks. McGraw-Hill, New YorkGoogle Scholar
  18. 18.
    Vapnik V (1998) Statistical learning theory. Wiley, New YorkGoogle Scholar
  19. 19.
    Cao K, Liu XS, Cao F, Zhao M, Yu SW (2006) A real-time traffic information prediction model Based on AOSVR and on-line learning. IEEE Intelligent Transportation Systems Conference, TorontoGoogle Scholar
  20. 20.
    Zafarani-Moattar MT, Shekaari H (2005) J Chem Eng Data 50:1694CrossRefGoogle Scholar
  21. 21.
    Zafarani-Moattar MT, Shekaari H (2006) J Chem Thermodyn 38:1377CrossRefGoogle Scholar
  22. 22.
    Iglesias-Otero MA, Troncoso J, Carballo E, Romani L (2007) J Solution Chem 36:1219CrossRefGoogle Scholar
  23. 23.
    Stoppa A, Hunger J, Buchner R (2008) J Chem Eng Data 54:472CrossRefGoogle Scholar
  24. 24.
    Arce A, Rodríguez H, Soto A (2006) Fluid Phase Equilib 242:164CrossRefGoogle Scholar
  25. 25.
    Yang Q, Zhang H, Su B, Yang Y, Ren Q, Xing H (2010) J Chem Eng Data 55:1750CrossRefGoogle Scholar
  26. 26.
    González EJ, Alonso L, Domínguez Á (2006) J Chem Eng Data 51:1446CrossRefGoogle Scholar
  27. 27.
    Vercher E, Orchillés AV, Miguel PJ, Martínez-Andreu A (2007) J Chem Eng Data 52:1468CrossRefGoogle Scholar
  28. 28.
    Domańska U, Pobudkowska A, Wiśniewska A (2006) J Solution Chem 35:311CrossRefGoogle Scholar
  29. 29.
    Hagan MT, Demuth HB, Beale MH, De Jesus O (2002) Neural network design, 2nd edn. Hagan of Stillwater, Oklahoma, U.S.A.Google Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Petroleum DepartmentUniversity of AberdeenAberdeenUK
  2. 2.Petroleum DepartmentShiraz UniversityShirazIran
  3. 3.Petroleum DepartmentPetroleum University of TechnologyAhvazIran
  4. 4.DWA Energy LimitedLincolnUK

Personalised recommendations