Advertisement

Monatshefte für Chemie - Chemical Monthly

, Volume 149, Issue 11, pp 2131–2136 | Cite as

Investigating the MgO nanoparticles and trypsin interaction through spectroscopic methods

  • Sheida Mahmodian
  • Lida Momeni
  • Behzad Shareghi
Original Paper
  • 41 Downloads

Abstract

The aim of this work was to study the effect of MgO nanoparticles (NPs) on both the structure and activity of the trypsin enzyme at pH 8.0 using UV–Vis spectroscopy, fluorescence spectroscopy, and enzyme activity assay techniques. The examination of the enzyme activity revealed that the MgO-NPs tended to increase the latter. Moreover, it was found that the rise in the trypsin UV–Vis absorption could be due to the formation of the trypsin–MgO-NPs complexes. The Stern–Volmer constant was reduced as the temperature was increased from 298 to 308 K, thereby indicating that the MgO-NPs caused the intrinsic fluorescence quench of trypsin via the static quenching mechanism. Furthermore, the detailed analysis of thermodynamic parameters for our fluorescence data revealed the spontaneous binding of trypsin to the MgO-NPs, with the hydrogen bonding and van der Waals interactions being only the main physical basis of the trypsin–MgO-NPs coupling.

Graphical abstract

Keywords

Trypsin Fluorescence Enzyme Activity 

References

  1. 1.
    Salata O (2004) J Nanobiotechnol 2:1CrossRefGoogle Scholar
  2. 2.
    Fei L, Perrett S (2009) Int J Mol Sci 10:646CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Momeni L, Shareghi B, Saboury A, Evini M (2017) Monatshefte für Chemie 148:199CrossRefGoogle Scholar
  4. 4.
    Rahman M, Laurent S, Tawil N, Yahia L, Mahmoudi M (2013) Protein-nanoparticle interactions. Springer, Berlin, pp 21–44Google Scholar
  5. 5.
    Naghsh N, Kazemi S (2014) Iran J Pharm Sci 10:63Google Scholar
  6. 6.
    Stoimenov PK, Klinger RL, Marchin GL, Klabunde KJ (2002) Langmuir 18:6679CrossRefGoogle Scholar
  7. 7.
    Tang Z-X, Lv B-F (2014) Braz J Chem Eng 31:591CrossRefGoogle Scholar
  8. 8.
    Bertinetti L, Drouet C, Combes C, Rey C, Tampieri A, Coluccia S, Martra G (2009) Langmuir 25:5647CrossRefPubMedGoogle Scholar
  9. 9.
    Di D-R, He Z-Z, Sun Z-Q, Liu J (2012) Nanomed Nanotechnol Biol Med 8:1233CrossRefGoogle Scholar
  10. 10.
    Momeni L, Shareghi B, Saboury AA, Farhadian S (2016) RSC Adv 6:60633CrossRefGoogle Scholar
  11. 11.
    Momeni L, Shareghi B, Saboury AA, Farhadian S, Reisi F (2017) Int J Biol Macromol 94:145CrossRefPubMedGoogle Scholar
  12. 12.
    Treuel L, Malissek M (2013) Cellular and subcellular nanotechnology. Methods in molecular biology, vol 991. Humana Press, New YorkGoogle Scholar
  13. 13.
    Gagner JE, Lopez MD, Dordick JS, Siegel RW (2011) Biomaterials 32:7241CrossRefPubMedGoogle Scholar
  14. 14.
    Shareghi B, Hashemian A, Farhadian S, Salavati-Niasari M, Moshtaghi H (2013) J Nanostruct 3:281Google Scholar
  15. 15.
    Shamaladevi N, Pattabhi V (2005) J Biomol Struct Dyn 22:635CrossRefPubMedGoogle Scholar
  16. 16.
    Saboury AA (2009) J Iran Chem Soc 6:219CrossRefGoogle Scholar
  17. 17.
    Momeni L, Shareghi B, Saboury AA (2017) J Biomol Struct Dyn 35:1381CrossRefPubMedGoogle Scholar
  18. 18.
    Wu X, Narsimhan G (2008) Biochim Biophys Acta Proteins Proteom 1784:1694CrossRefGoogle Scholar
  19. 19.
    Shang L, Wang Y, Jiang J, Dong S (2007) Langmuir 23:2714CrossRefPubMedGoogle Scholar
  20. 20.
    Blatt E, Chatelier R, Sawyer W (1986) Biophys J 50:349CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Singh S, Vignesh P, Burgner D (2015) Arch Dis Child 100:1084CrossRefPubMedGoogle Scholar
  22. 22.
    Lakowicz JR (2006) Plasmonics 1:5CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Lu D, Zhao X, Zhao Y, Zhang B, Zhang B, Geng M, Liu R (2011) Food Chem Toxicol 49:3158CrossRefPubMedGoogle Scholar
  24. 24.
    Vignesh G, Manojkumar Y, Sugumar K, Arunachalam S (2015) J Lumin 157:297CrossRefGoogle Scholar
  25. 25.
    Yang L, Huo D, Hou C, Yang M, Fa H, Luo X (2011) Spectrochim Acta Part A 78:1349CrossRefGoogle Scholar
  26. 26.
    Kelly SM, Jess TJ, Price NC (2005) Biochim Biophys Acta Proteins Proteom 1751:119CrossRefGoogle Scholar
  27. 27.
    Shareghi B, Farhadian S, Zamani N, Salavati-Niasari M, Moshtaghi H, Gholamrezaei S (2015) J Ind Eng Chem 21:862CrossRefGoogle Scholar
  28. 28.
    Chi Z, Liu R, Zhang H (2010) Biomacromolecules 11:2454CrossRefPubMedGoogle Scholar
  29. 29.
    Wang J, Wu J, Zhang ZH, Zhang XD, Wang L, Xu L, Guo BD, Li H, Tong J (2005) Chin Chem Lett 16:1105Google Scholar
  30. 30.
    Wang G, Chen Y, Yan C, Lu Y (2015) J Lumin 157:229CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Sheida Mahmodian
    • 1
  • Lida Momeni
    • 2
  • Behzad Shareghi
    • 1
  1. 1.Department of Biology, Faculty of ScienceShahrekord UniversityShahrekordIran
  2. 2.Department of Biology, Faculty of SciencePayam Noor UniversityTehranIran

Personalised recommendations