Monatshefte für Chemie - Chemical Monthly

, Volume 149, Issue 11, pp 2047–2057 | Cite as

Comparison of conventional and microwave-assisted synthesis of some new sulfenamides under free catalyst and ligand

  • Hasan YakanEmail author
  • Halil Kütük
Original Paper


Sulfenamide and its derivatives (S–N bond) have been synthesized with classical method in the literature. However, microwave-assisted synthesis of a series of N-(substituted phenylthio), N-(benzylthio), N-(cyclothio), and N-(2-mercaptobenzimidazolyl)amines has been not in the literature yet. They have been obtained from treating some amines (4 mmol) with thiophthalimides (PhthSR, 1 mmol) using sulfur transfer reagent in the presence of 2-ethoxyethanol (β-ee, neat) under microwave irradiation at 50 °C. The scope of this reaction was shown by the efficient synthesis of sulfenamides in good to excellent yields of 70–98% under free catalyst and ligand. Nine of the synthesized sulfenamide derivatives are novel. All of the thiols react with morpholine to give corresponding sulfenamides in excellent yields of 78–98%. Thiophenol, 4-methylthiophenol, 4-chlorothiophenol, and 4-fluorothiophenol react with cyclohexylamine to give corresponding sulfenamides in high yields 81–92%. Thiophenol, 4-methylthiophenol, 4-chlorothiophenol react with pyrrolidine to give corresponding sulfenamides in good yields of 70–76%. We observed that the reaction of t-butylamine with N-(phenylthio)phthalimide gave desired sulfenamide under microwave irradiation in the presence of DPPH as radical scavenger reagent in high yield of 93%. Aniline, benzylamine, 1-hexylamine, ethanolamine, diethylamine, N-ethyl-n-butylamine, N-ethylaniline, N-benzylmethylamine, t-butylamine react with thiols to give symmetrical disulfides instead of desired products under microwave irradiation, 2-ethoxyethanol as a solvent (neat), and at 50 °C. In this study, microwave-assisted synthesis method was compared with the classical method. All the products obtained were purified with chromatographic method and the analysis of these products was confirmed with IR, 1H NMR, 13C NMR spectroscopy, MS spectrometry, and elemental methods.

Graphical abstract


Sulfenamides Thiophthalimides Sulfur transfer reagent 2-Ethoxyethanol Microwave heating 



We would like to thank Ondokuz Mayis University (Grant No. PYO.FEN.1904.10.024) for its financial support of this work.

Supplementary material

706_2018_2261_MOESM1_ESM.docx (3.8 mb)
Supplementary material 1 (DOCX 3846 kb)


  1. 1.
    Davis FA (1973) Int J Sulfur Chem 8:71Google Scholar
  2. 2.
    Davis FA (2006) J Org Chem 71:8993CrossRefPubMedGoogle Scholar
  3. 3.
    Brito I, Restovic A, Pedreros S, Mancilla A, Vargas D, Leon Y, Ramirez E, Arias M, Brown K, Alvarez A, Arancibia A, Lopez-Rodriguez M (2003) J Chilean Chem Soc 48:51CrossRefGoogle Scholar
  4. 4.
    Nti-Addae KW (2008) Synthesis and physicochemical characterization of sulfenamide prodrugs of antimicrobial oxazolidinones. PhD dissertation, Pharmaceutical Chemistry Department, University of KansasGoogle Scholar
  5. 5.
    Koval IV (1996) Russ Chem Rev 65:421CrossRefGoogle Scholar
  6. 6.
    Koval IV (1995) Russ Chem Rev 64:731CrossRefGoogle Scholar
  7. 7.
    Koval IV (1990) Russ Chem Rev 59:396CrossRefGoogle Scholar
  8. 8.
    Heimer NE, Field L (1970) J Org Chem 35:3012CrossRefGoogle Scholar
  9. 9.
    Davis FA, Fretz ER, Horner CJ (1973) J Org Chem 38:690CrossRefGoogle Scholar
  10. 10.
    Davis FA, Friedman AJ, Kluger EW, Skibo EB, Fretz ER, Milicia AP, Lemasters WC (1977) J Org Chem 42:967CrossRefGoogle Scholar
  11. 11.
    Benati L, Montevecchi PC, Spagnolo P (1986) Tetrahedron Lett 27:1739CrossRefGoogle Scholar
  12. 12.
    Kuehle E (1973) The chemistry of the sulfenic acids. Georg Thieme, StuttgartGoogle Scholar
  13. 13.
    Craine L, Raban M (1989) J Am Chem Soc 89:689Google Scholar
  14. 14.
    Huttunen KM, Leppänen J, Laine K, Vepsäläinen J, Rautio J (2013) Eur J Pharm Sci 49:624CrossRefPubMedGoogle Scholar
  15. 15.
    Caddick S (1995) Tetrahedron 51:10403CrossRefGoogle Scholar
  16. 16.
    Valizadeh H, Dinparast L (2012) Monatsh Chem 143:251CrossRefGoogle Scholar
  17. 17.
    Karakuş H, Dürüst Y (2017) Mol Divers 21:53CrossRefPubMedGoogle Scholar
  18. 18.
    Adam D (2003) Nature 421:571CrossRefPubMedGoogle Scholar
  19. 19.
    Küçükbay H, Yilmaz Ü, Yavuz K, Buğday N (2015) Turk J Chem 39:1265CrossRefGoogle Scholar
  20. 20.
    Loupy A, Petit A, Hamelin F, Texier-Boullet F, Jacquault P, Mathe’ D (1998) Synthesis 1998:1213CrossRefGoogle Scholar
  21. 21.
    Lidström P, Tierney J, Wathey B, Westman J (2001) Tetrahedron 57:9225CrossRefGoogle Scholar
  22. 22.
    Varma RS (1999) Green Chem 1:43CrossRefGoogle Scholar
  23. 23.
    Kappe CO (2004) Angew Chem Int Ed 43:6250CrossRefGoogle Scholar
  24. 24.
    Anastas PT, Warner JC (1998) Green chemistry: theory and practice. Oxford University Press, Oxford, p 2Google Scholar
  25. 25.
    Harpp DN, Back TG (1971) Tetrahedron Lett 52:4953CrossRefGoogle Scholar
  26. 26.
    Kharasch K, Potempa SJ, Wehrmeister HL (1946) Chem Rev 39:269CrossRefPubMedGoogle Scholar
  27. 27.
    Shimizu M, Fukazawa H, Shimada S, Abe Y (2006) Tetrahedron 62:2175CrossRefGoogle Scholar
  28. 28.
    Senning A, Boureghda A, Abdel-Megeed MF, Jensen B, Nielsen B, Jensen AK (1991) Sulfur Lett 13:187Google Scholar
  29. 29.
    Davis FA, Nadir UK (1979) Org Prep Proced Int 11:33Google Scholar
  30. 30.
    Taniguchi N (2010) Eur J Org Chem 2010:2670CrossRefGoogle Scholar
  31. 31.
    Taniguchi N (2017) Tetrahedron 73:2030CrossRefGoogle Scholar
  32. 32.
    Rattanangkool E, Krailat W, Vilaivan T, Phuwapraisirisan P, Sukwattanasinitt M, Wacharasindhu S (2014) Eur J Org Chem 2014:4795CrossRefGoogle Scholar
  33. 33.
    Klose J, Reese CB, Song Q (1997) Tetrahedron 53:14411CrossRefGoogle Scholar
  34. 34.
    Kutuk H, Turkoz N (2011) Phosphorus Sulfur Silicon Relat Elem 186:1515CrossRefGoogle Scholar
  35. 35.
    Kutuk H, Yakan H (2011) Phosphorus Sulfur Silicon Relat Elem 186:1460CrossRefGoogle Scholar
  36. 36.
    Turkoz-Karakullukcu N, Yakan H, Ozturk S, Kutuk H (2013) Phosphorus Sulfur Silicon Relat Elem 188:1576CrossRefGoogle Scholar
  37. 37.
    Taniguchi N (2007) Synlett 2007:1917CrossRefGoogle Scholar
  38. 38.
    Dunbar JE, Rogers JH (1966) J Org Chem 31:2842CrossRefGoogle Scholar
  39. 39.
    Kadoma Y, Murakami Y, Ogiwara T, Machino M, Yokoe I, Fujisawa S (2010) Molecules 15:1103CrossRefPubMedGoogle Scholar
  40. 40.
    Fujisawa S, Kadoma Y, Yokoe I (2004) Chem Phys Lipids 130:189CrossRefPubMedGoogle Scholar
  41. 41.
    Halliwell B (1994) Nutr Rev 52:257Google Scholar
  42. 42.
    Bondet V, Brand-Williams W, Berset C (1997) Lebensm Wiss Technol 30:609CrossRefGoogle Scholar
  43. 43.
    Suwa S, Sakamoto T, Kikugawa Y (1999) Chem Pharm Bull 47:980CrossRefGoogle Scholar
  44. 44.
    Tanaka T, Azuma T, Fang X, Uchida S, Iwata C, Ishida T, In Y, Maezaki N (2000) Synlett 2000:33CrossRefGoogle Scholar
  45. 45.
    Clennan EL, Zhang H (1995) J Am Chem Soc 117:4218CrossRefGoogle Scholar
  46. 46.
    Levchenko ES, Dubinina TN, Sereda SV, Antipin MY, Struchkov YT, Boldeskul IE (1987) Russ J Org Chem 23:86Google Scholar
  47. 47.
    Torii S, Tanaka H, Ukida X (1979) J Org Chem 44:1554CrossRefGoogle Scholar
  48. 48.
    Maeda S, Samukawa S, Kobayashi H (1964) Benzimidazole derivatives. Patent JP 39015834, Aug 5, 1964; (1965) Chem Abstr 62:36857Google Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of EducationOndokuz Mayis UniversityAtakum, SamsunTurkey
  2. 2.Department of Chemistry, Faculty of Arts and SciencesOndokuz Mayis UniversityAtakum, SamsunTurkey

Personalised recommendations