Monatshefte für Chemie - Chemical Monthly

, Volume 149, Issue 10, pp 1777–1786 | Cite as

Degradation of the antibacterial agents triclosan and chlorophene using hydrodechlorination by Al-based alloys

  • Jan Pérko
  • Barbora Kamenická
  • Tomáš WeidlichEmail author
Original Paper


Triclosan and chlorophene are chlorinated phenols used as antimicrobial agents. Both compounds are ordinarily detected in aquatic environments. The aim of this study is to prove the reactivity of three different metallic alloys used as common reductants such as Raney Al–Ni (50% Al–50% Ni), Devarda’s Al–Cu–Zn alloy (45% Al–50% Cu–5% Zn), and Arnd’s Cu–Mg alloy (60% Cu–40% Mg) for the hydrodechlorination of these agents in alkaline aqueous solution at ambient temperature and investigating such parameters as type and amount of reagents. The hydrodechlorination of triclosan was found to be completed when 5 molar equivalents of Al in the form of Raney Al–Ni alloy (0.27 g) and 20 equivalents of NaOH (0.8 g) per 1 mmol of triclosan were used and the reaction was performed at ambient temperature and pressure during 20 h of vigorous stirring. Chlorophene was completely dechlorinated using 2.5 equivalents of Al (0.14 g) and 10 equivalents of NaOH (0.4 g) per 1 mmol of chlorophene under the same conditions.

Graphical abstract


Reductions Heterogeneous catalysis Chlorinated phenols Metals Ni 



This study was supported by Technology Agency of the Czech Republic TG02010058.


  1. 1.
    Gosh A, Gupta SS, Bartos MJ, Hangun Y, Vuocolo LD, Steinhoff BA, Noser CA, Horner D, Mayer S, Inderhees K, Horwitz CP, Spatz J, Ryabov AD, Mondal S, Collins TJ (2001) Pure Appl Chem 73:113CrossRefGoogle Scholar
  2. 2.
    Laine DF, Cheng IF (2007) Microchem J 85:183CrossRefGoogle Scholar
  3. 3.
    Rodan BD, Pennington DW, Eckley N, Boethling RS (1999) Environ Sci Technol 33:3482CrossRefGoogle Scholar
  4. 4.
    Bedoux G, Roig B, Thomas O, Dupont V, Le Bot B (2012) Environ Sci Pollut Res Int 19:1044CrossRefPubMedGoogle Scholar
  5. 5.
    Gilbert R, Williams P (1987) Br J Clin Pharmacol 23:579CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Crinnion WJ (2012) Altern Med Rev 17:6PubMedGoogle Scholar
  7. 7.
    Cutter CN (1999) J Food Prot 62:474CrossRefPubMedGoogle Scholar
  8. 8.
    Perencevich EN, Wong MT, Harris AD (2001) Am J Infect Control 29:281CrossRefPubMedGoogle Scholar
  9. 9.
    Adolfsson-Erici M, Pettersson M, Parkkonen J, Sturve J (2002) Chemosphere 46:1485CrossRefPubMedGoogle Scholar
  10. 10.
    Dayan AD (2007) Food Chem Toxicol 45:125CrossRefPubMedGoogle Scholar
  11. 11.
    Chau WC, Wu J-I, Cai Z (2008) Chemosphere 73:S13CrossRefPubMedGoogle Scholar
  12. 12.
    Bester K (2003) Water Res 37:3891CrossRefPubMedGoogle Scholar
  13. 13.
    Orvos DR, Versteeg DJ, Inauen J, Capdevielle M, Rothenstein A, Cunningham V (2002) Environ Toxicol Chem 21:1338CrossRefPubMedGoogle Scholar
  14. 14.
    Kanetoshi A, Ogawa H, Katsura E, Kaneshima H, Miura T (1988) J Chromatogr 442:289CrossRefPubMedGoogle Scholar
  15. 15.
    Bester K (2005) Arch Environ Contam Toxicol 49:9CrossRefPubMedGoogle Scholar
  16. 16.
    Latch DE, Packer JL, Arnold WA, McNeill K (2003) J Photochem Photobiol A Chem 158:63CrossRefGoogle Scholar
  17. 17.
    Benitez FJ, Acero JL, Garcia-Reyes JF, Real FJ, Roldan G (2013) Chem Eng J 230:447CrossRefGoogle Scholar
  18. 18.
    Zhang H, Huang C-H (2003) Environ Sci Technol 37:2421CrossRefPubMedGoogle Scholar
  19. 19.
    Yamarik TA (2003) Int J Toxicol 23:S1Google Scholar
  20. 20.
    Rostkowski P, Horwood J, Shears JA, Lange A, Oladapo FO, Besselink HT, Tyler CR, Hill EM (2011) Environ Sci Technol 45:10660CrossRefPubMedGoogle Scholar
  21. 21.
    Tundo P, Perosa A, Selva M, Zinovyev S (2001) Appl Catal B 32:L1CrossRefGoogle Scholar
  22. 22.
    Rodríguez JG, Lafuente A (2002) Tetrahedron Lett 43:9645CrossRefGoogle Scholar
  23. 23.
    Zheng Z, Yuan S, Liu Y, Lu X, Wan J, Wu X, Chen J (2009) J Hazard Mater 170:895CrossRefPubMedGoogle Scholar
  24. 24.
    Choi JH, Kim ZH (2009) J Hazard Mater 166:984CrossRefPubMedGoogle Scholar
  25. 25.
    Ghaffar A, Tabata M, Mashiatullah A, Allamer AS (2013) Environ Chem Lett 11:197CrossRefGoogle Scholar
  26. 26.
    Liu G-B, Tashiro M, Thiemann T (2009) Tetrahedron 65:2497CrossRefGoogle Scholar
  27. 27.
    Yang B, Zhang F, Deng S, Yu G, Zhang H, Xiao J, Shi L, Shen A (2012) Chem Eng J 209:79CrossRefGoogle Scholar
  28. 28.
    Yang B, Zhang J, Zhang Y, Deng S, Yu G, Wu J, Zhang H, Liu J (2014) Chem Eng J 250:222CrossRefGoogle Scholar
  29. 29.
    Ghaffar A, Tabata M (2009) Waste Manag 29:3004CrossRefPubMedGoogle Scholar
  30. 30.
    Ghaffar A, Tabata M (2010) Green Chem Lett Rev 3:179CrossRefGoogle Scholar
  31. 31.
    Weidlich T, Krejčová A, Prokeš L (2010) Monatsh Chem 141:1015CrossRefGoogle Scholar
  32. 32.
    Weidlich T, Prokeš L (2011) Cent Eur J Chem 9:590Google Scholar
  33. 33.
    Weidlich T, Krejčová A, Prokeš L (2013) Monatsh Chem 144:155CrossRefGoogle Scholar
  34. 34.
    Weidlich T, Prokeš L, Pospíšilová D (2013) Cent Eur J Chem 11:979Google Scholar
  35. 35.
    Weidlich T, Opršal J, Krejčová A, Jašúrek B (2015) Monatsh Chem 146:613CrossRefGoogle Scholar
  36. 36.
    Loftsson T, Össurardóttir ÍB, Thorsteinsson T, Duan M, Másson M (2005) J Incl Phenom Macrocycl Chem 52:109CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Jan Pérko
    • 1
  • Barbora Kamenická
    • 1
  • Tomáš Weidlich
    • 1
    Email author
  1. 1.Faculty of Chemical Technology, Institute of Environmental and Chemical EngineeringUniversity of PardubicePardubiceCzech Republic

Personalised recommendations