Monatshefte für Chemie - Chemical Monthly

, Volume 149, Issue 11, pp 2069–2084 | Cite as

Design, synthesis, molecular docking, and in vitro antidiabetic activity of novel PPARγ agonist

  • Radha Nandan Chaturvedi
  • Krishnaiah Pendem
  • Vipul P. Patel
  • Mukta Sharma
  • Sunita MalhotraEmail author
Original Paper


The present work describes the design, synthesis, molecular docking, biological evaluation, and assessment of structure–activity relationship of new derivatives based upon the molecular skeleton of the drug pioglitazone, a compound which is currently used for the management of type 2 diabetes mellitus. Pioglitazone has several side effects such as weight gain, edema, congestive heart failure, and bladder cancer. Therefore, there is a strong demand for identification of new lead candidates in the treatment of type 2 diabetes mellitus. A series of 24 compounds were prepared and evaluated for their peroxisome proliferator-activated receptor-γ (PPARγ) binding affinity assay and the IC50 values were determined. Among these compounds, six compounds exhibited promising IC50 values as compared to standard drugs pioglitazone and rosiglitazone. Furthermore, in order to confirm the target of these molecules, molecular docking study was carried out with peroxisome proliferator-activated receptor-γ (PPARγ) protein. Molecular modeling studies suggested that these compounds appropriately interact in the active sites of receptor.

Graphical abstract


Knoevenagel reaction Molecular modeling PPARγ Structure–activity relationships Type 2 diabetes TZDs 



One of the authors, RNC is thankful to Mr. Awatar singh and Manish kumar, SAIF, Punjab University, Chandigarh, for providing spectral data of all the synthesized compounds. The author is also greatly thankful to management of Ind-Swift laboratory Ltd., for providing all necessary facility to carry out this research work.

Supplementary material

706_2018_2207_MOESM1_ESM.docx (2.5 mb)
Supplementary material 1 (DOCX 2547 kb)


  1. 1.
    Espinosa JJR, Rios MY, Martínez SL, Vallejo FL, Medina-Franco JL, Paoli P, Camici G, Navarrete-Vázquez G, Ortiz-Andrade R, Estrada-Soto S (2011) Eur J Med Chem 46:2243CrossRefGoogle Scholar
  2. 2.
    De-Fronzo RA (1992) Diabetologia 35:389.hGoogle Scholar
  3. 3.
    Reddy TN, Ravinder M, Bagul P, Ravikanti K, Bagul C, Nanubolu JB, Srinivas K, Banerjee SK, Rao VJ (2014) Eur J Med Chem 71:53CrossRefPubMedGoogle Scholar
  4. 4.
    Gurram RM, Chakrabarti R, Reeba KV (2002) Bioorg Med Chem 10:2671CrossRefGoogle Scholar
  5. 5.
    Cantello BCC, Cawthome MA, Haigh D, Hindley RM, Smith SA, Thurlby PL (1994) Bioorg Med Chem Lett 10:1181CrossRefGoogle Scholar
  6. 6.
    Zimmet P, Alberti KGMM, Shaw J (2001) Nature 414:782CrossRefPubMedGoogle Scholar
  7. 7.
    Ibrahim MK, Eissa IH, Abdallah AE, Metwaly AM, Radwan MM, ElSohly MA (2017) Bioorg Med Chem 25:1496CrossRefPubMedGoogle Scholar
  8. 8.
    Turner NC (1996) Drug Discovery Today 1:109CrossRefGoogle Scholar
  9. 9.
    Silink M, Tuomilehto J, Mbanya JC, Venkat Narayani KM, Fradkin J, Roglic G (2010) A prioritized research agenda for prevention and control of noncommunicable diseases. World Health Organization, GenevaGoogle Scholar
  10. 10.
    Shaw JE, Sicree RA, Zimmet PZ (2010) Diabetes Res Clin Pract 87:4CrossRefPubMedGoogle Scholar
  11. 11.
    Camer D, Yu Y, Szabo A, Huang X (2014) Mol Nutr Food Res 58:1750CrossRefPubMedGoogle Scholar
  12. 12.
    Harrichund P, Naicker S, Raal FJ (2008) J Endocrinol 13:3Google Scholar
  13. 13.
    Tokito A, Koriyama N, Ijuin A, Ogiso K, Nishio Y, Jougasaki M (2015) J Diabetes Mellitus 5:258CrossRefGoogle Scholar
  14. 14.
    Kim H, Gim H, Yang M, Ryu J, Jeon R (2007) Heterocycles 71:2131CrossRefGoogle Scholar
  15. 15.
    Fujita T, Sugiyama Y, Taketomi S, Sohda T, Kawamatsu T, Iwatsuka H, Suzuoki Z (1983) Diabetes 32:804CrossRefPubMedGoogle Scholar
  16. 16.
    Spiegelman BM (1998) Diabetes 47:507CrossRefPubMedGoogle Scholar
  17. 17.
    Bogacka I, Xie H, Bray GA, Smith SR (2004) Diabetes Care 27:1660CrossRefPubMedGoogle Scholar
  18. 18.
    Vidal-Puig AJ, Considine RV, Jimenez-Liñan M, Ariel Werman A, Pories WJ, Caro JF, Flier JS (1997) J Clin Invest 99:2416CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Lehmann JM, Moore LB, Smith-Oliver TA, Wilkison WO, Kliewer SA (1995) J Biol Chem 270:12953CrossRefPubMedGoogle Scholar
  20. 20.
    Lehrke M, Lazar MA (2005) Cell 123:993CrossRefPubMedGoogle Scholar
  21. 21.
    Elbrecht A, Chen Y, Cullinan CA, Hayes N, Leibowitz MD, Moller DE, Berger J (1996) Biochem Biophys Res Commun 224:431CrossRefPubMedGoogle Scholar
  22. 22.
    Kersten S, Desvergne B, Wahli W (2000) Nature 405:421CrossRefPubMedGoogle Scholar
  23. 23.
    Kaserer T, Obermoser V, Weninger A, Gust R, Schuster D (2016) Eur J Med Chem 124:49CrossRefPubMedGoogle Scholar
  24. 24.
    Chandra V, Huang P, Hamuro Y, Raghuram S, Wang Y, Burris TP, Rastinejad F (2008) Nature 456:350CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Usui S, Suzuki T, Hattori Y, Etoh K, Fujieda H, Nishizuka M, Imagawa M, Nakagawa H, Kohda K, Miyata N (2005) Bioorg Med Chem Lett 15:1547CrossRefPubMedGoogle Scholar
  26. 26.
    Grillier-Vuissoz I, Mazerbourg S, Boisbrun M, Kuntz S, Chapleur Y, Flament S (2012) J Carcinog Mutagen S8:002Google Scholar
  27. 27.
    Uchiyama M, Koda H, Fischer T, Mueller J, Yamamura N, Oguchi M, Iwabuchi H, Okazaki O, Izumi T (2011) Drug Metab Dispos 39:1311CrossRefPubMedGoogle Scholar
  28. 28.
    Patel KP, Joshi HM, Majmudar FD, Patel VJ (2013) J Med Sci 2:6Google Scholar
  29. 29.
    Pastromas S, Kouloris S (2006) Hellenic J Cardiol 47:352PubMedGoogle Scholar
  30. 30.
    Hauner H (2002) Diabetes Metab Res Rev 18:S10CrossRefPubMedGoogle Scholar
  31. 31.
    Martens FMAC, Visseren FLJ, Lemay J, de Koning EJP, Rabelink TJ (2002) Drugs 62:1463CrossRefPubMedGoogle Scholar
  32. 32.
    Lebovitz HE, Banerji MA (2001) Recent Prog Horm Res 56:265CrossRefPubMedGoogle Scholar
  33. 33.
    Komers R, Vrana A (1998) Physiol Res 47:215PubMedGoogle Scholar
  34. 34.
    Ye J (2011) Acta Pharm Sin B 1:137CrossRefGoogle Scholar
  35. 35.
    Madivada LR, Anumala RR, Gilla G, Alla S, Charagondla K, Kagga M, Bhattacharya A, Bandichhor R (2009) Org Process Res Dev 13:1190CrossRefGoogle Scholar
  36. 36.
    Al-Rashood KA, Abdel-Aziz HA (2010) Molecules 15:3775CrossRefPubMedGoogle Scholar
  37. 37.
    Turek M, Szczęsna D, Koprowski M, Bałczewski P (2017) Beilstein J Org Chem 13:451CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Prashantha Kumar BR, Soni M, Santhosh Kumar S, Singh K, Patil M, Nasir Baig RB, Adhikary L (2011) Eur J Med Chem 6:835CrossRefGoogle Scholar
  39. 39.
    Darwish KM, Salama I, Mostafa SM, Gomaa MS, Helal MA (2016) Eur J Med 109:157CrossRefGoogle Scholar
  40. 40.
    Hu Q, Yin L, Hartmann RW (2012) J Med Chem 55:7080CrossRefPubMedGoogle Scholar
  41. 41.
    Oshiro Y, Sato S, Kurahashi N, Tanaka T, Kikuchi T, Tottori K, Uwahodo Y, Nishi T (1998) J Med Chem 41:658CrossRefPubMedGoogle Scholar
  42. 42.
    Wu Y, Tai HH, Cho H (2010) Bioorg Med Chem 18:1428CrossRefPubMedGoogle Scholar
  43. 43.
    Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) J Comput Chem 30:2785CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Huang B, Schroeder M (2006) BMC Struct Biol 6:19CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Trott O, Olson AJ (2010) J Comput Chem 31:455PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Radha Nandan Chaturvedi
    • 1
    • 2
  • Krishnaiah Pendem
    • 3
  • Vipul P. Patel
    • 4
  • Mukta Sharma
    • 5
  • Sunita Malhotra
    • 2
    Email author
  1. 1.Ind-Swift Laboratories Ltd.PunjabIndia
  2. 2.Department of Chemistry, School of SciencesIndira Gandhi National Open UniversityNew DelhiIndia
  3. 3.Neuland Laboratories LtdBonthapalleIndia
  4. 4.Sanjivani College of Pharmaceutical Education and ResearchAhmednagarIndia
  5. 5.CSIR-Institute of Genomics and Integrative BiologyNew DelhiIndia

Personalised recommendations