Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Long-term monitoring of G1P[8] rotaviruses circulating without vaccine pressure in Nizhny Novgorod, Russia, 1984-2019

  • 19 Accesses

Abstract

The G1P[8] genotype is one of the most common among rotaviruses circulating in the last 40 years. Therefore, this genotype is a component of rotavirus vaccines licensed throughout the world. This paper presents the results of a 35-year (1984–2019) observation of the circulation of G1P[8] rotaviruses among children under 14 in one region (Nizhny Novgorod, Russia) without vaccine pressure. Several complementary approaches were used: RNA electropherotyping by polyacrylamide gel electrophoresis, PCR genotyping, and cDNA sequencing of rotavirus VP4 and VP7 genes. A total of 8375 rotavirus-positive samples were examined, and the proportion of genotype G1P[8] rotaviruses was 39.9% (4.3-98.9%). Two cycles of high circulation activity (1984–1993 and 1993–2007) and one cycle of low activity (2007–2019) were noted. Phylogenetic analysis revealed the presence of rotaviruses of two VP4 gene lineages (P[8]-1 and P[8]-3) and two VP7 gene lineages (sublineages IA, IB, ID, II-B, II-C, and II- E). The prolonged circulation of rotaviruses of only one sublineage (G1-II-E) and then a change of the prevailing sublineage within the G1-II lineage (from E to C) during the active circulation were shown. Since 2011, when the circulation intensity of G1P[8] rotaviruses was low, the appearance of strains of the G1-I lineage and their co-circulation with strains of the G1-II lineage were observed in the population.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Parashar UD, Gibson CJ, Bresee JS, Glass RI (2006) Rotavirus and severe childhood diarrhea. Emerg Infect Dis 12:304–306

  2. 2.

    Ogilvie I, Khoury H, El Khoury AC, Goetghebeur MM (2011) Burden of rotavirus gastroenteritis in the pediatric population in Central and Eastern Europe: serotype distribution and burden of illness. Hum Vaccin 7:523–533

  3. 3.

    Cherepanova EA, Simonova EG, Raichich RR, Linok AV, Filatov NN (2018) Assessment of epidemiological risk in the system of surveillance for acute intestinal infections relevant to the Russian Federation. Popul Health Life Environ 3:23–28 (article in Russian)

  4. 4.

    Novikova NA, Sashina TA, Solntsev LA, Epifanova NV, Kashnikov AU, Pogodina LV, Okun IN, Knyagina ON (2017) Manifestation of rotavirus infection epidemic process in Nizhny Novgorod in the pre-vaccine period. J Microbiol Epidemiol Immunobiol 5:46–53 (article in Russian)

  5. 5.

    Lefkowitz EJ, Dempsey DM, Hendrickson RC, Orton RJ, Siddell SG, Smith DB (2018) Virus taxonomy: the database of the International Committee on Taxonomy of Viruses (ICTV). Nucleic Acids Res 46:D708–D717

  6. 6.

    Matthijnssens J, Ciarlet M, McDonald SM, Attoui H, Bányai K, Brister JR, Buesa J, Esona MD, Estes MK, Gentsch JR, Iturriza-Gómara M, Johne R, Kirkwood CD, Martella V, Mertens PP, Nakagomi O, Parreño V, Rahman M, Ruggeri FM, Saif LJ, Santos N, Steyer A, Taniguchi K, Patton JT, Desselberger U, Van Ranst M (2011) Uniformity of rotavirus strain nomenclature proposed by the Rotavirus Classification Working Group (RCWG). Arch Virol 156:1397–1413

  7. 7.

    Estes MK, Greenberg HB (2013) Rotaviruses. In: Knipe DM, Howley PM (eds) Fields virology, 6th edn. Wolters Kluwer Health/Lippincott Williams & Wilkins, Philadelphia, pp 1347–1401

  8. 8.

    Aoki ST, Settembre EC, Trask SD, Greenberg HB, Harrison SC, Dormitzer PR (2009) Structure of rotavirus outer-layer protein VP7 bound with a neutralizing fab. Science 324:1444–1447

  9. 9.

    Coulson BS, Kirkwood C (1991) Relation of VP7 amino-acid-sequence to monoclonal-antibody neutralization of rotavirus and rotavirus monotype. J Virol 65:5968–5974

  10. 10.

    Dormitzer PR, Sun ZYJ, Wagner G, Harrison SC (2002) The rhesus rotavirus VP4 sialic acid binding domain has a galectin fold with a novel carbohydrate binding site. Embo J 21:885–897

  11. 11.

    Gentsch JR, Glass RI, Woods P, Gouvea V, Gorziglia M, Flores J, Das BK, Bhan MK (1992) Identification of group A rotavirus gene 4 types by polymerase chain reaction. J Clin Microbiol 30:1365–1373

  12. 12.

    Gouvea V, Glass RI, Woods P, Taniguchi K, Clark HF, Forrester B, Fang ZY (1990) Polymerase chain reaction amplification and typing of rotavirus nucleic acid from stool specimens. J Clin Microbiol 28:276–282

  13. 13.

    Matthijnssens J, Ciarlet M, Rahman M, Attoui H, Banyai K, Estes MK, Gentsch JR, Iturriza-Gomara M, Kirkwood CD, Martella V, Mertens PPC, Nakagomi O, Patton JT, Ruggeri FM, Saif LJ, Santos N, Steyer A, Taniguchi K, Desselberger U, Van Ranst M (2008) Recommendations for the classification of group A rotaviruses using all 11 genomic RNA segments. Arch Virol 153:1621–1629

  14. 14.

    Rojas M, Dias HG, Goncalves JLS, Manchego A, Rosadio R, Pezo D, Santos N (2019) Genetic diversity and zoonotic potential of rotavirus A strains in the southern Andean highlands, Peru. Transbound Emerg Dis 66:1718–1726

  15. 15.

    Gentsch JR, Laird AR, Bielfelt B, Griffin DD, Banyai K, Ramachandran M, Jain V, Cunliffe NA, Nakagomi O, Kirkwood CD, Fischer TK, Parashar UD, Bresee JS, Jiang B, Glass RI (2005) Serotype diversity and reassortment between human and animal rotavirus strains: implications for rotavirus vaccine programs. J Infect Dis 192:S146–S159

  16. 16.

    Patton JT (2012) Rotavirus diversity and evolution in the post-vaccine World. Discov Med 13:85–97

  17. 17.

    Santos N, Hoshino Y (2005) Global distribution of rotavirus serotypes/genotypes and its implication for the development and implementation of an effective rotavirus vaccine. Rev Med Virol 15:29–56

  18. 18.

    Ahmed S, Klena J, Albana A, Alhamdani F, Oskoff J, Soliman M, Heylen E, Teleb N, Husain T, Matthijnssens J (2013) Characterization of human rotaviruses circulating in Iraq in 2008: atypical G8 and high prevalence of P[6] strains. Infect Genet Evol 16:212–217

  19. 19.

    Novikova NA, Fedorova OF, Epifanova NV (2007) G[P] type profiles of group A human rotavirus and their distribution in Nizhni Novgorod and Dzerzhinsk in 1997-2005. Vopr Virusol 3:19–23 (article in Russian)

  20. 20.

    Soeorg H, Tamm E, Huik K, Pauskar M, Magi D, Pruudel K, Vainomae L, Moosar L, Kirss K, Torm S, Narska M, Putsepp A, Nurm H, Pruunsild K, Janes A, Zilmer K, Lutsar I (2012) Group A rotavirus genotypes circulating prior to implementation of a national immunization program in Estonia. Hum Vaccines Immunother 8:465–469

  21. 21.

    Tcheremenskaia O, Marucci G, De Petris S, Ruggeri FM, Dovecar D, Sternak SL, Matyasova I, Dhimolea MK, Mladenova Z, Fiore L, Rotavirus Study Group (2007) Molecular epidemiology of rotavirus in Central and Southeastern Europe. J Clin Microbiol 45:2197–2204

  22. 22.

    Thongprachum A, Chan-it W, Khamrin P, Okitsu S, Nishimura S, Kikuta H, Yamamoto A, Sugita K, Baba T, Mizuguchi M, Maneekarn N, Hayakawa S, Ushijima H (2013) Reemergence of new variant G3 rotavirus in Japanese pediatric patients, 2009-2011. Infect Genet Evol 13:168–174

  23. 23.

    Van Damme P, Giaquinto C, Maxwell M, Todd P, Van der Wielen M, REVEAL Study Group (2007) Distribution of rotavirus genotypes in Europe, 2004-2005: the REVEAL study. J Infect Dis 195:S17–S25

  24. 24.

    World Health Organization (2013) Rotavirus vaccines WHO position paper: january 2013 recommendations. Vaccine 31:6170–6171

  25. 25.

    Yen C, Tate JE, Patel MM, Cortese MM, Lopman B, Fleming J, Lewis K, Jiang B, Gentsch J, Steele D, Parashar UD (2011) Rotavirus vaccines: update on global impact and future priorities. Hum Vaccin 7:1282–1290

  26. 26.

    Hull JJ, Teel EN, Kerin TK, Freeman MM, Esona MD, Gentsch JR, Cortese MM, Parashar UD, Glass RI, Bowen MD, System NRSS (2011) United States rotavirus strain surveillance from 2005 to 2008: genotype prevalence before and after vaccine introduction. Pediatr Infect Dis J 30:S42–47

  27. 27.

    Pietsch C, Schuster V, Liebert UG (2011) A hospital based study on inter- and intragenotypic diversity of human rotavirus A VP4 and VP7 gene segments, Germany. J Clin Virol 50:136–141

  28. 28.

    Roczo-Farkas S, Cowley D, Bines JE, Bradbury S, Malinsky E, Rawlinson W, Lahra M, Merif J, Kesson A, Tam I, Sintchenko V, Olna T, Givney R, Pearce S, Delves K, Spence D, Wehrhahn M, Karimi M, Cook H, Moore F, McMahon J, Nimmo G, Bletchly C, George N, Lambert S, Dang L, Gilmore G, Higgins G, Schepetiuk S, Williamson J, Buttery J, Kotsanas D, Adamopolous P, Hrysoudis E, Gray F, Quach R, Smith D, Levy A, Lang J, Australian Rotavirus S (2019) Australian rotavirus surveillance group: annual report, 2017. Commun Dis Intell 43:1–21

  29. 29.

    Epifanova NV, Sashina TA, Novikova NA, Morozova OV, Fomina SG, Lukovnikova LB (2014) The spectrum of rotavirus genotypes in the territory of Nizhny Novgorod in 2005-2012. The predominance of the G4P[8] genotype. Med Alm 2:52–57 (article in Russian)

  30. 30.

    Morozova OV, Sashina TA, Epifanova NV, Zverev VV, Kashnikov AU, Novikova NA (2018) Phylogenetic comparison of the VP7, VP4, VP6, and NSP4 genes of rotaviruses isolated from children in Nizhny Novgorod, Russia, 2015-2016, with cogent genes of the Rotarix and RotaTeq vaccine strains. Virus Genes 54:225–235

  31. 31.

    Novikova NA, Morozova OV, Fedorova OF, Epifanova NV, Sashina TA, Efimov EI (2012) Rotavirus infection in children of Nizhny Novgorod, Russia: the gradual change of the virus allele from P[8]-1 to P[8]-3 in the period 1984-2010. Arch Virol 157:2405–2409

  32. 32.

    Sashina TA, Morozova OV, Epifanova NV, Novikova NA (2017) Predominance of new G9P[8] rotaviruses closely related to Turkish strains in Nizhny Novgorod (Russia). Arch Virol 162:2387–2392

  33. 33.

    Svensson L, Uhnoo I, Grandien M, Wadell G (1986) Molecular epidemiology of rotavirus infections in Uppsala, Sweden, 1981: disappearance of a predominant electropherotype. J Med Virol 18:101–111

  34. 34.

    Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

  35. 35.

    Das BK, Gentsch JR, Cicirello HG, Woods PA, Gupta A, Ramachandran M, Kumar R, Bhan MK, Glass RI (1994) Characterization of rotavirus strains from newborns in New-Delhi, India. J Clin Microbiol 32:1820–1822

  36. 36.

    Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549

  37. 37.

    Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 29:1969–1973

  38. 38.

    Morozova OV, Sashina TA, Novikova NA (2017) Detection and molecular characterization of reassortant DS-1-like G1P[8] strains of rotavirus A. Vopr Virusol 62:91–96 (article in Russian)

  39. 39.

    Phan TG, Khamrin P, Quang TD, Dey SK, Takanashi S, Okitsu S, Maneekarn N, Ushijima H (2007) Detection and genetic characterization of group a rotavirus strains circulating among children with acute gastroenteritis in Japan. J Virol 81:4645–4653

  40. 40.

    Chen JZ, Settembre EC, Aoki ST, Zhang X, Bellamy AR, Dormitzer PR, Harrison SC, Grigorieff N (2009) Molecular interactions in rotavirus assembly and uncoating seen by high-resolution cryo-EM. Proc Natl Acad Sci USA 106:10644–10648

  41. 41.

    Novikova NA, Epifanova NV, Altova EE, Dushkin VN, Pudova KV, Medvedev KL (1992) Electroforetic typing of rotaviruses in the clinico-epidemiologic study of infection. Zh Mikrobiol Epidemiol Immunobiol 2:31–34 (article in Russian)

  42. 42.

    da Silva MFM, Rose TL, Gomez MM, Carvalho-Costa FA, Fialho AM, de Assis RMS, de Andrade JDR, Volotao EDM, Leite JPG (2015) G1P[8] species A rotavirus over 27 years—pre- and post-vaccination eras—in Brazil: full genomic constellation analysis and no evidence for selection pressure by rotarix (R) vaccine. Infect Genet Evol 30:206–218

  43. 43.

    Barril P, Martinez L, Giordano M, Masachessi G, Isa M, Pavan J, Glikmann G, Nates S (2013) Genetic and antigenic evolution profiles of G1 rotaviruses in Cordoba, Argentina, during a 27-year period (1980-2006). J Med Virol 85:363–369

  44. 44.

    De Grazia S, Bonura F, Colomba C, Cascio A, Di Bernardo F, Collura A, Terranova DM, Martella V, Giammanco GM (2014) Data mining from a 27-years rotavirus surveillance in Palermo, Italy. Infect Genet Evol 28:377–384

  45. 45.

    Hemming M, Vesikari T (2013) Genetic diversity of G1P[8] rotavirus VP7 and VP8*antigens in Finland over a 20-year period: no evidence for selection pressure by universal mass vaccination with RotaTeq (R) vaccine. Infect Genet Evol 19:51–58

  46. 46.

    Zeller M, Donato C, Trovao NS, Cowley D, Heylen E, Donker NC, McAllen JK, Akopov A, Kirkness EF, Lemey P, Van Ranst M, Matthijnssens J, Kirkwood CD (2015) Genome-wide evolutionary analyses of G1P[8] strains isolated before and after rotavirus vaccine introduction. Genome Biol Evol 7:2473–2483

  47. 47.

    Diwakarla CS, Palombo EA (1999) Genetic and antigenic variation of capsid protein VP7 of serotype G1 human rotavirus isolates. J Gen Virol 80:341–344

  48. 48.

    Arista S, Giammanco GM, De Grazia S, Ramirez S, Lo Biundo C, Colomba C, Cascio A, Martella V (2006) Heterogeneity and temporal dynamics of evolution of G1 human rotaviruses in a settled population. J Virol 80:10724–10733

  49. 49.

    Ahmed K, Ahmed S, Mitui MT, Rahman A, Kabir L, Hannan A, Nishizono A, Nakagomi O (2010) Molecular characterization of VP7 gene of human rotaviruses from Bangladesh. Virus Genes 40:347–356

  50. 50.

    Araujo IT, Assis RMS, Madi A, Mascarenhas JDP, Heinemann MB, Leite JPG (2007) Brazilian P[8], G1, P[8], G5, P[8], G9, and P[4], G2 rotavirus strains: nucleotide sequence and phylogenetic analysis. J Med Virol 79:995–1001

  51. 51.

    Cunliffe NA, Gondwe JS, Graham SM, Thindwa BDM, Dove W, Broadhead RL, Molyneux ME, Hart CA (2001) Rotavirus strain diversity in Blantyre, Malawi, from 1997 to 1999. J Clin Microbiol 39:836–843

  52. 52.

    Le VP, Chung YC, Kim K, Chung SI, Lim I, Kim W (2010) Genetic variation of prevalent G1P[8] human rotaviruses in South Korea. J Med Virol 82:886–896

  53. 53.

    Magagula NB, Esona MD, Nyaga MM, Stucker KM, Halpin RA, Stockwell TB, Seheri ML, Steele AD, Wentworth DE, Mphahlele MJ (2015) Whole genome analyses of G1P[8] rotavirus strains from vaccinated and non-vaccinated South African children presenting with diarrhea. J Med Virol 87:79–101

  54. 54.

    Oh H-K, Hong S-H, Ahn B-Y, Min H-K (2012) Phylogenetic analysis of the rotavirus genotypes originated from children < 5 years of age in 16 cities in South Korea, between 2000 and 2004. Osong Public Health Res Perspect 3:36–42

  55. 55.

    Berois M, Libersou S, Russi J, Arbiza J, Cohen J (2003) Genetic variation in the VP7 gene of human rotavirus isolated in Montevideo, Uruguay, from 1996-1999. J Med Virol 71:456–462

  56. 56.

    Parra GI, Bok K, Martinez V, Russomando G, Gomez J (2005) Molecular characterization and genetic variation of the VP7 gene of human rotaviruses isolated in Paraguay. J Med Virol 77:579–586

Download references

Acknowledgements

This study was funded by the Russian Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing as part of a federal program (no. 141-00063-18-00).

Author information

Correspondence to T. A. Sashina.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study was approved by the Ethical Committee of the I.N. Blokhina Nizhny Novgorod Research Institute of Epidemiology and Microbiology of the Russian Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling Editor: Tim Skern.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 172 kb)

Supplementary material 2 (PDF 1209 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Novikova, N.A., Sashina, T.A., Epifanova, N.V. et al. Long-term monitoring of G1P[8] rotaviruses circulating without vaccine pressure in Nizhny Novgorod, Russia, 1984-2019. Arch Virol (2020). https://doi.org/10.1007/s00705-020-04553-2

Download citation