Advertisement

Distribution of infectious endogenous retroviruses in mixed-breed and purebred cats

  • Minh Ha Ngo
  • Takehisa Soma
  • Hwa-Young Youn
  • Taiji Endo
  • Isaac Makundi
  • Junna Kawasaki
  • Ariko Miyake
  • Bui Thi To Nga
  • Huyen Nguyen
  • MaríaCruz Arnal
  • Daniel Fernández de Luco
  • R. M. C. Deshapriya
  • Shingo Hatoya
  • Kazuo NishigakiEmail author
Original Article

Abstract

Endogenous retroviruses of domestic cats (ERV-DCs) are members of the genus Gammaretrovirus that infect domestic cats (Felis silvestris catus). Uniquely, domestic cats harbor replication-competent proviruses such as ERV-DC10 (ERV-DC18) and ERV-DC14 (xenotropic and nonecotropic viruses, respectively). The purpose of this study was to assess invasion by two distinct infectious ERV-DCs, ERV-DC10 and ERV-DC14, in domestic cats. Of a total sample of 1646 cats, 568 animals (34.5%) were positive for ERV-DC10 (heterozygous: 377; homozygous: 191), 68 animals (4.1%) were positive for ERV-DC14 (heterozygous: 67; homozygous: 1), and 10 animals (0.6%) were positive for both ERV-DC10 and ERV-DC14. ERV-DC10 and ERV-DC14 were detected in domestic cats in Japan as well as in Tanzania, Sri Lanka, Vietnam, South Korea and Spain. Breeding cats, including Singapura, Norwegian Forest and Ragdoll cats, showed high frequencies of ERV-DC10 (60–100%). By contrast, ERV-DC14 was detected at low frequency in breeding cats. Our results suggest that ERV-DC10 is widely distributed while ERV-DC14 is maintained in a minor population of cats. Thus, ERV-DC10 and ERV-DC14 have invaded cat populations independently.

Notes

Acknowledgements

We thank Fermín Urra and Veterinary Clinic “Parque Bruil” for providing European domestic cat samples. We thank Edanz Group (http://www.edanzediting.com/ac) for editing a draft of this manuscript.

Funding

This work was supported by the Japan Society for the Promotion of Science KAKENHI to K.N. (Grant Number 15H04602).

Compliance with ethical standards

Animal studies were conducted according to the guidelines for the care and use of laboratory animals of the Ministry of Education, Culture, Sports, Science, and Technology, Japan. All experiments were approved by the Genetic Modification Safety Committee of Yamaguchi University.

Conflict of interest

All authors declare that they have no conflicts of interest.

References

  1. 1.
    Boeke JD, Stoye JP (1997) Retrotransponsons, endogenous retroviruses and the evolution of retroelements. In: Coffin JM, Hughes SH, Varmus HE (eds) Retroviruses. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  2. 2.
    Dimmic MW, Rest JS, Mindell DP, Goldstein RA (2002) rtREV: an amino acid substitution matrix for inference of retrovirus and reverse transcriptase phylogeny. J Mol Evol 55(1):65–73.  https://doi.org/10.1007/s00239-001-2304-y CrossRefPubMedGoogle Scholar
  3. 3.
    Jarrett WF, Crawford EM, Martin WB, Davie F (1964) A virus-like particle associated with leukemia (lymphosarcoma). Nature 202:567–569.  https://doi.org/10.1038/202567a0 CrossRefPubMedGoogle Scholar
  4. 4.
    Pontius JU, Mullikin JC, Smith DR, Team AS, Lindblad-Toh K, Gnerre S, Clamp M, Chang J, Stephens R, Neelam B, Volfovsky N, Schäffer AA, Agarwala R, Narfström K, Murphy WJ, Giger U, Roca AL, Antunes A, Menotti-Raymond M, Yuhki N, Pecon-Slattery J, Johnson WE, Bourque G, Tesler G, Program NCS, O’Brien SJ (2007) Initial sequence and comparative analysis of the cat genome. Genome Res 17(11):1675–1689.  https://doi.org/10.1101/gr.6380007 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, Funke R, Gage D, Harris K, Heaford A, Howland J, Kann L, Lehoczky J, LeVine R, McEwan P, McKernan K, Meldrim J, Mesirov JP, Miranda C, Morris W, Naylor J, Raymond C, Rosetti M, Santos R, Sheridan A, Sougnez C, Stange-Thomann Y, Stojanovic N, Subramanian A, Wyman D, Rogers J, Sulston J, Ainscough R, Beck S, Bentley D, Burton J, Clee C, Carter N, Coulson A, Deadman R, Deloukas P, Dunham A, Dunham I, Durbin R, French L, Grafham D, Gregory S, Hubbard T, Humphray S, Hunt A, Jones M, Lloyd C, McMurray A, Matthews L, Mercer S, Milne S, Mullikin JC, Mungall A, Plumb R, Ross M, Shownkeen R, Sims S, Waterston RH, Wilson RK, Hillier LW, McPherson JD, Marra MA, Mardis ER, Fulton LA, Chinwalla AT, Pepin KH, Gish WR, Chissoe SL, Wendl MC, Delehaunty KD, Miner TL, Delehaunty A, Kramer JB, Cook LL, Fulton RS, Johnson DL, Minx PJ, Clifton SW, Hawkins T, Branscomb E, Predki P, Richardson P, Wenning S, Slezak T, Doggett N, Cheng JF, Olsen A, Lucas S, Elkin C, Uberbacher E, Frazier M, Gibbs RA, Muzny DM, Scherer SE, Bouck JB, Sodergren EJ, Worley KC, Rives CM, Gorrell JH, Metzker ML, Naylor SL, Kucherlapati RS, Nelson DL, Weinstock GM, Sakaki Y, Fujiyama A, Hattori M, Yada T, Toyoda A, Itoh T, Kawagoe C, Watanabe H, Totoki Y, Taylor T, Weissenbach J, Heilig R, Saurin W, Artiguenave F, Brottier P, Bruls T, Pelletier E, Robert C, Wincker P, Smith DR, Doucette-Stamm L, Rubenfield M, Weinstock K, Lee HM, Dubois J, Rosenthal A, Platzer M, Nyakatura G, Taudien S, Rump A, Yang H, Yu J, Wang J, Huang G, Gu J, Hood L, Rowen L, Madan A, Qin S, Davis RW, Federspiel NA, Abola AP, Proctor MJ, Myers RM, Schmutz J, Dickson M, Grimwood J, Cox DR, Olson MV, Kaul R, Raymond C, Shimizu N, Kawasaki K, Minoshima S, Evans GA, Athanasiou M, Schultz R, Roe BA, Chen F, Pan H, Ramser J, Lehrach H, Reinhardt R, McCombie WR, de la Bastide M, Dedhia N, Blocker H, Hornischer K, Nordsiek G, Agarwala R, Aravind L, Bailey JA, Bateman A, Batzoglou S, Birney E, Bork P, Brown DG, Burge CB, Cerutti L, Chen HC, Church D, Clamp M, Copley RR, Doerks T, Eddy SR, Eichler EE, Furey TS, Galagan J, Gilbert JG, Harmon C, Hayashizaki Y, Haussler D, Hermjakob H, Hokamp K, Jang W, Johnson LS, Jones TA, Kasif S, Kaspryzk A, Kennedy S, Kent WJ, Kitts P, Koonin EV, Korf I, Kulp D, Lancet D, Lowe TM, McLysaght A, Mikkelsen T, Moran JV, Mulder N, Pollara VJ, Ponting CP, Schuler G, Schultz J, Slater G, Smit AF, Stupka E, Szustakowki J, Thierry-Mieg D, Thierry-Mieg J, Wagner L, Wallis J, Wheeler R, Williams A, Wolf YI, Wolfe KH, Yang SP, Yeh RF, Collins F, Guyer MS, Peterson J, Felsenfeld A, Wetterstrand KA, Patrinos A, Morgan MJ, de Jong P, Catanese JJ, Osoegawa K, Shizuya H, Choi S, Chen YJ, Szustakowki J (2001) Initial sequencing and analysis of the human genome. Nature 409(6822):860–921.  https://doi.org/10.1038/35057062 CrossRefPubMedGoogle Scholar
  6. 6.
    Chinwalla AT, Cook LL, Delehaunty KD, Fewell GA, Fulton LA, Fulton RS, Graves TA, Hillier LW, Mardis ER, McPherson JD, Miner TL, Nash WE, Nelson JO, Nhan MN, Pepin KH, Pohl CS, Ponce TC, Schultz B, Thompson J, Trevaskis E, Waterston RH, Wendl MC, Wilson RK, Yang S-P, An P, Berry E, Birren B, Bloom T, Brown DG, Butler J, Daly M, David R, Deri J, Dodge S, Foley K, Gage D, Gnerre S, Holzer T, Jaffe DB, Kamal M, Karlsson EK, Kells C, Kirby A, Kulbokas EJ, Lander ES, Landers T, Leger JP, Levine R, Lindblad-Toh K, Mauceli E, Mayer JH, McCarthy M, Meldrim J, Meldrim J, Mesirov JP, Nicol R, Nusbaum C, Seaman S, Sharpe T, Sheridan A, Singer JB, Santos R, Spencer B, Stange-Thomann N, Vinson JP, Wade CM, Wierzbowski J, Wyman D, Zody MC, Birney E, Goldman N, Kasprzyk A, Mongin E, Rust AG, Slater G, Stabenau A, Ureta-Vidal A, Whelan S, Ainscough R, Attwood J, Bailey J, Barlow K, Beck S, Burton J, Clamp M, Clee C, Coulson A, Cuff J, Curwen V, Cutts T, Davies J, Eyras E, Grafham D, Gregory S, Hubbard T, Hunt A, Jones M, Joy A, Leonard S, Lloyd C, Matthews L, McLaren S, McLay K, Meredith B, Mullikin JC, Ning Z, Oliver K, Overton-Larty E, Plumb R, Potter S, Quail M, Rogers J, Scott C, Searle S, Shownkeen R, Sims S, Wall M, West AP, Willey D, Williams S, Abril JF, Guigó R, Parra G, Agarwal P, Agarwala R, Church DM, Hlavina W, Maglott DR, Sapojnikov V, Alexandersson M, Pachter L, Antonarakis SE, Dermitzakis ET, Reymond A, Ucla C, Baertsch R, Diekhans M, Furey TS, Hinrichs A, Hsu F, Karolchik D, Kent WJ, Roskin KM, Schwartz MS, Sugnet C, Weber RJ, Bork P, Letunic I, Suyama M, Torrents D, Zdobnov EM, Botcherby M, Brown SD, Campbell RD, Jackson I, Bray N, Couronne O, Dubchak I, Poliakov A, Rubin EM, Brent MR, Flicek P, Keibler E, Korf I, Batalov S, Bult C, Frankel WN, Carninci P, Hayashizaki Y, Kawai J, Okazaki Y, Cawley S, Kulp D, Wheeler R, Chiaromonte F, Collins FS, Felsenfeld A, Guyer M, Peterson J, Wetterstrand K, Copley RR, Mott R, Dewey C, Dickens NJ, Emes RD, Goodstadt L, Ponting CP, Winter E, Dunn DM, von Niederhausern AC, Weiss RB, Eddy SR, Johnson LS, Jones TA, Elnitski L, Kolbe DL, Eswara P, Miller W, O’Connor MJ, Schwartz S, Gibbs RA, Muzny DM, Glusman G, Smit A, Green ED, Hardison RC, Yang S, Haussler D, Hua A, Roe BA, Kucherlapati RS, Montgomery KT, Li J, Li M, Lucas S, Ma B, McCombie WR, Morgan M, Pevzner P, Tesler G, Schultz J, Smith DR, Tromp J, Worley KC, Lander ES, Abril JF, Agarwal P, Alexandersson M, Antonarakis SE, Baertsch R, Berry E, Birney E, Bork P, Bray N, Brent MR, Brown DG, Butler J, Bult C, Chiaromonte F, Chinwalla AT, Church DM, Clamp M, Collins FS, Copley RR, Couronne O, Cawley S, Cuff J, Curwen V, Cutts T, Daly M, Dermitzakis ET, Dewey C, Mouse Genome Sequencing C, Genome Sequencing C, Whitehead Institute MITCfGR, European Bioinformatics I, Wellcome Trust Sanger I, Research Group in Biomedical I, Bioinformatics, National Center for Biotechnology I, Department of M, Division of Medical G, Center for Biomolecular S, Engineering, Embl, Consortium UMMS, Lawrence Berkeley National L, Department of Computer S, School of Computer S, The Jackson L, Laboratory for Genome E, Affymetrix I, Departments of S, Health Evaluation S, National Human Genome Research I, Wellcome Trust Centre for Human G, Department of Electrical E, Department of Human A, Genetics, Department of Human G, Howard Hughes Medical I, Department of G, Departments of B, Molecular B, Computer S, Engineering, Department of Computer S, Engineering, Baylor College of M, The Institute for Systems B, Department of B, Molecular B, Howard Hughes Medical I, Department of C, Biochemistry, Departments of G, Medicine, Harvard-Partners Center for G, Genomics, Department of S, Institute UDJG, Cold Spring Harbor L, Wellcome T, Max Planck Institute for Molecular G, Genome Therapeutics C, Bioinformatics Solutions I, Department of M, Human G, Department of B, Members of the Mouse Genome Analysis G (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420(6915):520–562.  https://doi.org/10.1038/nature01262 CrossRefPubMedGoogle Scholar
  7. 7.
    Weiss RA (2006) The discovery of endogenous retroviruses. Retrovirology 3(1):67.  https://doi.org/10.1186/1742-4690-3-67 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Kozak CA (2014) Origins of the endogenous and infectious laboratory mouse gammaretroviruses. Viruses 7(1):1–26.  https://doi.org/10.3390/v7010001 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Tarlinton RE, Meers J, Young PR (2006) Retroviral invasion of the koala genome. Nature 442(7098):79–81.  https://doi.org/10.1038/nature04841 CrossRefPubMedGoogle Scholar
  10. 10.
    Hanger JJ, Bromham LD, McKee JJ, O’Brien TM, Robinson WF (2000) The nucleotide sequence of Koala (Phascolarctos cinereus) retrovirus: a novel type C endogenous virus related to gibbon ape leukemia virus. J Virol 74(9):4264–4272.  https://doi.org/10.1128/jvi.74.9.4264-4272.2000 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Wilson CA, Wong S, Muller J, Davidson CE, Rose TM, Burd P (1998) Type C retrovirus released from porcine primary peripheral blood mononuclear cells infects human cells. J Virol 72(4):3082–3087PubMedPubMedCentralGoogle Scholar
  12. 12.
    Le Tissier P, Stoye JP, Takeuchi Y, Patience C, Weiss RA (1997) Two sets of human-tropic pig retrovirus. Nature 389(6652):681–682.  https://doi.org/10.1038/39489 CrossRefPubMedGoogle Scholar
  13. 13.
    Todaro GJ, Benveniste RE, Lieber MM, Sherr CJ (1974) Characterization of a type C virus released from the porcine cell line PK(15). Virology 58(1):65–74.  https://doi.org/10.1016/0042-6822(74)90141-X CrossRefPubMedGoogle Scholar
  14. 14.
    Moennig V, Frank H, Hunsmann G, Ohms P, Schwarz H, Schäfer W, Strandström H (1974) C-type particles produced by a permanent cell line from a leukemic pig: II. Physical, chemical, and serological characterization of the particles. Virology 57(1):179–188.  https://doi.org/10.1016/0042-6822(74)90119-6 CrossRefPubMedGoogle Scholar
  15. 15.
    Armstrong JA, Porterfield JS, de Madrid AT (1971) C-type virus particles in pig kidney cell lines. J Gen Virol 10(2):195–198.  https://doi.org/10.1099/0022-1317-10-2-195 CrossRefPubMedGoogle Scholar
  16. 16.
    Kuse K, Ito J, Miyake A, Kawasaki J, Watanabe S, Makundi I, Ngo MH, Otoi T, Nishigaki K (2016) Existence of two distinct infectious endogenous retroviruses in domestic cats and their different strategies for adaptation to transcriptional regulation. J Virol 90(20):9029–9045.  https://doi.org/10.1128/jvi.00716-16 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Anai Y, Ochi H, Watanabe S, Nakagawa S, Kawamura M, Gojobori T, Nishigaki K (2012) Infectious endogenous retroviruses in cats and emergence of recombinant viruses. J Virol 86(16):8634–8644.  https://doi.org/10.1128/jvi.00280-12 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Driscoll CA, Menotti-Raymond M, Roca AL, Hupe K, Johnson WE, Geffen E, Harley EH, Delibes M, Pontier D, Kitchener AC, Yamaguchi N, O’Brien SJ, Macdonald DW (2007) The near eastern origin of cat domestication. Science 317(5837):519–523.  https://doi.org/10.1126/science.1139518 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Driscoll CA, Clutton-Brock J, Kitchener AC, O’Brien SJ (2009) The taming of the cat. Sci Am 300(6):68–75CrossRefGoogle Scholar
  20. 20.
    Vella CM, Shelton LM, McGonagle JJ, Stanglein TW (1999) Robinson’s genetics for cat breeders and veterinarians, 4th edn. Butterworth-Heinemann Ltd, OxfordGoogle Scholar
  21. 21.
    Salonen M, Vapalahti K, Tiira K, Mäki-Tanila A, Lohi H (2019) Breed differences of heritable behaviour traits in cats. Sci Rep 9(1):7949.  https://doi.org/10.1038/s41598-019-44324-x CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    David VA, Menotti-Raymond M, Wallace AC, Roelke M, Kehler J, Leighty R, Eizirik E, Hannah SS, Nelson G, Schaffer AA, Connelly CJ, O’Brien SJ, Ryugo DK (2014) Endogenous retrovirus insertion in the KIT oncogene determines white and white spotting in domestic cats. G3 (Bethesda, Md) 4(10):1881–1891.  https://doi.org/10.1534/g3.114.013425 CrossRefGoogle Scholar
  23. 23.
    Polani S, Roca AL, Rosensteel BB, Kolokotronis SO, Bar-Gal GK (2010) Evolutionary dynamics of endogenous feline leukemia virus proliferation among species of the domestic cat lineage. Virology 405(2):397–407.  https://doi.org/10.1016/j.virol.2010.06.010 CrossRefPubMedGoogle Scholar
  24. 24.
    Roca AL, Nash WG, Menninger JC, Murphy WJ, O’Brien SJ (2005) Insertional polymorphisms of endogenous feline leukemia viruses. J Virol 79(7):3979–3986.  https://doi.org/10.1128/JVI.79.7.3979-3986.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Roca AL, Pecon-Slattery J, O’Brien SJ (2004) Genomically intact endogenous feline leukemia viruses of recent origin. J Virol 78(8):4370–4375.  https://doi.org/10.1128/JVI.78.8.4370-4375.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Coffin JM (2004) Evolution of retroviruses: fossils in our DNA. Proc Am Philos Soc 148(3):264–280PubMedGoogle Scholar
  27. 27.
    Niman HL, Akhavi M, Gardner MB, Stephenson JR, Roy-Burman P (1980) Differential expression of two distinct endogenous retrovirus genomes in developing tissues of the domestic cat. J Natl Cancer Inst 64(3):587–594PubMedGoogle Scholar
  28. 28.
    Koshy R, Gallo RC, Wong-Staal F (1980) Characterization of the endogenous feline leukemia virus-related DNA sequences in cats and attempts to identify exogenous viral sequences in tissues of virus-negative leukemic animals. Virology 103(2):434–445.  https://doi.org/10.1016/0042-6822(80)90202-0 CrossRefPubMedGoogle Scholar
  29. 29.
    Benveniste RE, Sherr CJ, Todaro GJ (1975) Evolution of type C viral genes: origin of feline leukemia virus. Science 190(4217):886–888.  https://doi.org/10.1126/science.52892 CrossRefPubMedGoogle Scholar
  30. 30.
    McDougall AS, Terry A, Tzavaras T, Cheney C, Rojko J, Neil JC (1994) Defective endogenous proviruses are expressed in feline lymphoid cells: evidence for a role in natural resistance to subgroup B feline leukemia viruses. J Virol 68(4):2151–2160PubMedPubMedCentralGoogle Scholar
  31. 31.
    Stewart MA, Warnock M, Wheeler A, Wilkie N, Mullins JI, Onions DE, Neil JC (1986) Nucleotide sequences of a feline leukemia virus subgroup A envelope gene and long terminal repeat and evidence for the recombinational origin of subgroup B viruses. J Virol 58(3):825–834PubMedPubMedCentralGoogle Scholar
  32. 32.
    Ito J, Watanabe S, Hiratsuka T, Kuse K, Odahara Y, Ochi H, Kawamura M, Nishigaki K (2013) Refrex-1, a soluble restriction factor against feline endogenous and exogenous retroviruses. J Virol 87(22):12029–12040.  https://doi.org/10.1128/jvi.01267-13 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Watanabe S, Kawamura M, Odahara Y, Anai Y, Ochi H, Nakagawa S, Endo Y, Tsujimoto H, Nishigaki K (2013) Phylogenetic and structural diversity in the feline leukemia virus env gene. PLoS One 8(4):e61009.  https://doi.org/10.1371/journal.pone.0061009 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Ngo MH, Arnal M, Sumi R, Kawasaki J, Miyake A, Grant CK, Otoi T, Fernández de Luco D, Nishigaki K (2019) Tracking the fate of endogenous retrovirus segregation in wild and domestic cats. J Virol 93(24):e01324-01319.  https://doi.org/10.1128/JVI.01324-19 CrossRefGoogle Scholar
  35. 35.
    Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory, Cold Spring HarborGoogle Scholar
  36. 36.
    Kurushima JD, Lipinski MJ, Gandolfi B, Froenicke L, Grahn JC, Grahn RA, Lyons LA (2013) Variation of cats under domestication: genetic assignment of domestic cats to breeds and worldwide random-bred populations. Anim Genet 44(3):311–324.  https://doi.org/10.1111/age.12008 CrossRefPubMedGoogle Scholar
  37. 37.
    Menotti-Raymond M, David VA, Pflueger SM, Lindblad-Toh K, Wade CM, O’Brien SJ, Johnson WE (2008) Patterns of molecular genetic variation among cat breeds. Genomics 91(1):1–11CrossRefGoogle Scholar
  38. 38.
    Lipinski MJ, Froenicke L, Baysac KC, Billings NC, Leutenegger CM, Levy AM, Longeri M, Niini T, Ozpinar H, Slater MR, Pedersen NC, Lyons LA (2008) The ascent of cat breeds: genetic evaluations of breeds and worldwide random-bred populations. Genomics 91(1):12–21.  https://doi.org/10.1016/j.ygeno.2007.10.009 CrossRefPubMedGoogle Scholar
  39. 39.
    Palmarini M, Mura M, Spencer TE (2004) Endogenous betaretroviruses of sheep: teaching new lessons in retroviral interference and adaptation. J Gen Virol.  https://doi.org/10.1099/vir.0.19547-0 CrossRefPubMedGoogle Scholar
  40. 40.
    Greenwood AD, Ishida Y, O’Brien SP, Roca AL, Eiden MV (2018) Transmission, evolution, and endogenization: lessons learned from recent retroviral invasions. Microbiol Mol Biol Rev 82(1):e00044-00017.  https://doi.org/10.1128/mmbr.00044-17 CrossRefGoogle Scholar
  41. 41.
    Malfavon-Borja R, Feschotte C (2015) Fighting fire with fire: endogenous retrovirus envelopes as restriction factors. J Virol 89(8):4047–4050.  https://doi.org/10.1128/jvi.03653-14 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Cornelis G, Heidmann O, Bernard-Stoecklin S, Reynaud K, Véron G, Mulot B, Dupressoir A, Heidmann T (2012) Ancestral capture of syncytin-Car1, a fusogenic endogenous retroviral envelope gene involved in placentation and conserved in Carnivora. Proc Natl Acad Sci 109(7):E432–E441.  https://doi.org/10.1073/pnas.1115346109 CrossRefPubMedGoogle Scholar
  43. 43.
    Donahue PR, Hoover EA, Beltz GA, Riedel N, Hirsch VM, Overbaugh J, Mullins JI (1988) Strong sequence conservation among horizontally transmissible, minimally pathogenic feline leukemia viruses. J Virol 62(3):722–731PubMedPubMedCentralGoogle Scholar
  44. 44.
    Pandey R, Ghosh AK, Kumar DV, Bachman BA, Shibata D, Roy-Burman P (1991) Recombination between feline leukemia virus subgroup B or C and endogenous env elements alters the in vitro biological activities of the viruses. J Virol 65(12):6495–6508PubMedPubMedCentralGoogle Scholar
  45. 45.
    Overbaugh J, Riedel N, Hoover EA, Mullins JI (1988) Transduction of endogenous envelope genes by feline leukaemia virus in vitro. Nature 332(6166):731–734.  https://doi.org/10.1038/332731a0 CrossRefPubMedGoogle Scholar
  46. 46.
    Young GR, Eksmond U, Salcedo R, Alexopoulou L, Stoye JP, Kassiotis G (2012) Resurrection of endogenous retroviruses in antibody-deficient mice. Nature 491(7426):774–778.  https://doi.org/10.1038/nature11599 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Stoye JP, Moroni C, Coffin JM (1991) Virological events leading to spontaneous AKR thymomas. J Virol 65(3):1273–1285PubMedPubMedCentralGoogle Scholar
  48. 48.
    Shimode S, Nakagawa S, Miyazawa T (2015) Multiple invasions of an infectious retrovirus in cat genomes. Sci Rep 5:8164.  https://doi.org/10.1038/srep08164. https://www.nature.com/articles/srep08164#supplementary-information

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratory of Molecular Immunology and Infectious Disease, The United Graduate School of Veterinary ScienceYamaguchi UniversityYamaguchiJapan
  2. 2.Veterinary Diagnostic LaboratoryMarupi Lifetech Co., Ltd.IkedaJapan
  3. 3.Department of Veterinary Internal Medicine, Seoul National University Hospital for Animals, College of Veterinary MedicineSeoul National UniversitySeoulSouth Korea
  4. 4.Laboratory of Molecular Immunology and Infectious Disease, Joint Faculty of Veterinary MedicineYamaguchi UniversityYamaguchiJapan
  5. 5.Department of Veterinary Pathology, Faculty of Veterinary MedicineVietnam National University of AgricultureHanoiVietnam
  6. 6.Animal Care ClinicHanoiVietnam
  7. 7.Departamento de Patología Animal, Facultad de VeterinariaUniversidad de ZaragozaZaragozaSpain
  8. 8.Department of Animal Science, Faculty of AgricultureUniversity of PeradeniyaPeradeniyaSri Lanka
  9. 9.Department of Advanced Pathobiology, Graduate School of Life and Environmental SciencesOsaka Prefecture UniversityIzumisanoJapan

Personalised recommendations