Advertisement

Proteomic and phosphoproteomic analyses reveal several events involved in the early stages of bovine herpesvirus 1 infection

  • Marcos J. Magalhães-Junior
  • Maria Cristina Baracat-PereiraEmail author
  • Lorena K. J. Pereira
  • Camilo E. Vital
  • Marcus R. Santos
  • Pricila S. Cunha
  • Kenner M. Fernandes
  • Gustavo C. Bressan
  • Juliana L. R. Fietto
  • Abelardo Silva-Júnior
  • Márcia R. Almeida
Original Article
  • 29 Downloads

Abstract

Herpesviruses are predicted to express more than 80 proteins during their infection cycle. The proteins synthesized by the immediate early genes and early genes target signaling pathways in host cells that are essential for the successful initiation of a productive infection and for latency. In this study, proteomic and phosphoproteomic tools showed the occurrence of changes in Madin-Darby bovine kidney cells at the early stage of the infection by bovine herpesvirus 1 (BoHV-1). Proteins that had already been described in the early stage of infection for other herpesviruses but not for BoHV-1 were found. For example, stathmin phosphorylation at the initial stage of infection is described for the first time. In addition, two proteins that had not been described yet in the early stages of herpesvirus infections in general were ribonuclease/angiogenin inhibitor and Rab GDP dissociation inhibitor beta. The biological processes involved in these cellular responses were repair and replication of DNA, splicing, microtubule dynamics, and inflammatory responses. These results reveal pathways that might be used as targets for designing antiviral molecules against BoHV-1 infection.

Highlights

  • BoHV-1 infection at early stages influenced various biological processes.

  • BoHV-1 infection at early stages showed proteins reported for other virus and stages.

  • Proteins not yet reported for BoHV-1 infection in the early stage were ribonuclease/angiogenin inhibitor and Rab GDP dissociation inhibitor beta

Abbreviations

2-DE

two-dimensional gel electrophoresis

ACN

acetonitrile

ACTB

beta-actin

AHSG

alpha-2-HS glycoprotein

Apo-AI

apolipoprotein A-I

BoHV-1

bovine herpesvirus 1

BRDC

bovine respiratory disease complex

C1/C2

heterogeneous nuclear ribonucleoprotein C

CHAPS

3-3-cholamidopropyl dimethylammonio-1-propanesulfonate

CyHV-2

cyprinid herpesvirus 2

DTT

dithiothreitol

DUT

deoxyuridine triphosphate

dUTPase

deoxyuridine triphosphatase

EBNA2

Epstein-Barr virus nuclear antigen 2

EG

early gene

FA

formic acid

GAPDH

glyceraldehyde-3-phosphate dehydrogenase

Grp78

78 kDa glucose-regulated protein

HHV-1

human herpesvirus 1

HNRNPK

heterogeneous nuclear ribonucleoprotein K

hpi

hours postinfection

HSP27

heat shock protein beta-1

HSP70

heat shock protein 70

HVEM

HHV-1 entry mediator

IEG

immediate-early gene

IPG

immobilized pH gradient

LG

late gene

MDBK

Madin-Darby bovine kidney

MEM

minimum essential medium

MOI

multiplicity of infection

MS

mass spectrometry

NPM

nucleophosmin

NPM1

nucleophosmin-1

OSF1

osteoclast stimulating factor

PCNA

proliferating cell nuclear antigen

PNP

purine nucleoside phosphorylase

PTGES3

prostaglandin E synthase 3

qPCR

real-time quantitative PCR

RNH1

ribonuclease/angiogenin inhibitor 1

RPLP0

ribosomal protein large P0

RPS18

ribosomal protein S18

SR

serine/arginine-rich

STMN1

stathmin 1

TBB

tubulin beta

TFA

trifluoroacetic acid

VHS

virion host shut-off

vRNP

viral ribonucleoproteins

Notes

Acknowledgements

The authors thank the Brazilian Agencies Foundation for Research Support of Minas Gerais (FAPEMIG: Fellowships and Grants, PPM-00796-15), the Financier of Studies and Projects (FINEP: CT-INFRA/UFV-2004/2007/2008), the National Council for Scientific and Technological Development (CNPq: Grants: 483976/2012-1 and 455318/2014-0), and Coordination for the Improvement of Higher Education Personnel (CAPES: Fellowships) for financial support. The authors would like to thank Nucleus of Analysis of Biomolecules (NuBioMol, UFV, Viçosa-MG, Brazil) for assistance with mass spectrometric analysis, and the Institute of Biotechnology Applied to Agriculture (BIOAGRO, UFV, Viçosa-MG, Brazil) for technical support. Funding Sources in Brazil: Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) http://dx.doi.org/10.13039/501100004901. Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) http://dx.doi.org/10.13039/501100003593. Financiadora de Estudos e Projetos (FINEP) http://dx.doi.org/10.13039/501100004809. Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) http://dx.doi.org/10.13039/501100002322.

Author contributions

MJMJ, LKJP, CEV, and KMF cultured and infected cells, performed electrophoresis assays and protein analysis. MJMJ, PSC and MRS performed real-time PCR. MCBP, ASJ, GCB, JLRF, PSC, MRS, and MRA designed and conducted the biological assays. MJMJ, MCBP, ASJ, PSC, and MRS wrote and revised the manuscript. All authors contributed and gave approval to the final version of the manuscript.

Compliance with ethical standards

Conflict of interest

The authors have nothing to disclose as conflicts of interest. The authors declare no competing financial interest.

Supplementary material

705_2019_4452_MOESM1_ESM.docx (3.2 mb)
Supplementary material 1 (DOCX 3289 kb)

References

  1. 1.
    Raaperi K, Orro T, Viltrop A (2014) Epidemiology and control of bovine herpesvirus 1 infection in Europe. Vet J 201:249–256.  https://doi.org/10.1016/j.tvjl.2014.05.040 CrossRefPubMedGoogle Scholar
  2. 2.
    Schwyzer M, Ackermann M (1996) Molecular virology of ruminant herpesviruses. Vet Microbiol 53:17–29.  https://doi.org/10.1016/S0378-1135(96)01231-X CrossRefPubMedGoogle Scholar
  3. 3.
    Robinson KE, Meers J, Gravel JL et al (2008) The essential and non-essential genes of Bovine herpesvirus 1. J Gen Virol 89:2851–2863.  https://doi.org/10.1099/vir.0.2008/002501-0 CrossRefPubMedGoogle Scholar
  4. 4.
    Roizman B, Knipe DM, Whitley RJ (2007) Fields virology, 5th ed. PhiladelphiaGoogle Scholar
  5. 5.
    Knipe DM, Cliffe A (2008) Chromatin control of herpes simplex virus lytic and latent infection. Nat Rev Microbiol 6:211–221.  https://doi.org/10.1038/nrmicro1794 CrossRefPubMedGoogle Scholar
  6. 6.
    Cotter CR, Kim WK, Nguyen ML et al (2011) The virion host shutoff protein of herpes simplex virus 1 blocks the replication-independent activation of NF- B in dendritic cells in the absence of type I interferon signaling. J Virol 85:12662–12672.  https://doi.org/10.1128/JVI.05557-11 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Liang Y, Quenelle D, Vogel JL et al (2013) Reactivation from latency A novel selective LSD1/KDM1A inhibitor epigenetically blocks. MBio 4:1–9.  https://doi.org/10.1128/mBio.00558-12.Editor CrossRefGoogle Scholar
  8. 8.
    Chen IB, Sciabica KS, Sandri-goldin RM (2002) ICP27 interacts with the RNA export factor Aly/REF to direct herpes simplex virus Type 1 intronless mRNAs to the TAP export pathway ICP27 interacts with the RNA export factor Aly/REF to direct herpes simplex virus Type 1 intronless mRNAs to the TAP Ex. J Virol 76:12877–12889.  https://doi.org/10.1128/JVI.76.24.12877 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Sciabica KS, Dai QJ, Sandri-Goldin RM (2003) ICP27 interacts with SRPK1 to mediate HSV splicing inhibition by altering SR protein phosphorylation. EMBO J 22:1608–1619.  https://doi.org/10.1093/emboj/cdg166 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Walsh D, Mohr I (2011) Viral subversion of the host protein synthesis machinery. Nat Rev Microbiol 9:860–875.  https://doi.org/10.1038/nrmicro2655 CrossRefPubMedGoogle Scholar
  11. 11.
    Barzilai A, Zivony-Elbom I, Sarid R et al (2006) The herpes simplex virus Type 1 vhs-UL41 gene secures viral replication by temporarily evading apoptotic cellular response to infection: Vhs-UL41 activity might require interactions with elements of cellular mRNA degradation machinery. J Virol 80:505–513.  https://doi.org/10.1128/JVI.80.1.505 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Levings RL, Roth JA (2013) Immunity to bovine herpesvirus 1: I. Viral lifecycle and innate immunity. Anim Health Res Rev 14:88–102.  https://doi.org/10.1017/S1466252313000042 CrossRefPubMedGoogle Scholar
  13. 13.
    Levings RL, Roth JA (2013) Immunity to bovine herpesvirus 1: II. Adaptive immunity and vaccinology. Anim Health Res Rev 14:103–123.  https://doi.org/10.1017/S1466252313000054 CrossRefPubMedGoogle Scholar
  14. 14.
    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254.  https://doi.org/10.1016/0003-2697(76)90527-3 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Rabilloud T, Lelong C (2011) Two-dimensional gel electrophoresis in proteomics: a tutorial. J Proteom 74:1829–1841.  https://doi.org/10.1016/j.jprot.2011.05.040 CrossRefGoogle Scholar
  16. 16.
    Agrawal GK, Thelen JJ (2009) A high-resolution two dimensional Gel- and Pro-Q DPS-based proteomics workflow for phosphoprotein identification and quantitative profiling. Methods Mol, BiolCrossRefGoogle Scholar
  17. 17.
    Neuhoff V, Arold N, Taube D, Ehrhardt W (1988) Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250. Electrophoresis 9:255–262.  https://doi.org/10.1002/elps.1150090603 CrossRefPubMedGoogle Scholar
  18. 18.
    Shevchenko A, Tomas H, Havliš J et al (2007) In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc 1:2856–2860.  https://doi.org/10.1038/nprot.2006.468 CrossRefGoogle Scholar
  19. 19.
    Boutet E, Lieberherr D, Tognolli M et al (2016) Uniprotkb/swiss-prot, the manually annotated section of the uniprot knowledgebase: how to use the entry view. In: Methods in molecular biologyGoogle Scholar
  20. 20.
    Szklarczyk D, Franceschini A, Wyder S et al (2015) STRING v10: Protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res 43:D447–D452.  https://doi.org/10.1093/nar/gku1003 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Ashburner M, Ball CA, Blake JA et al (2000) Gene ontology: tool for the unification of biology. Nat Genet 25:25–29.  https://doi.org/10.1038/75556 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Schoen K, Plendl J, Gabler C, Kaessmeyer S (2015) Identification of stably expressed reference genes for RT-qPCR data normalization in defined localizations of cyclic bovine ovaries. J Vet Med Ser C Anat Histol Embryol 44:200–211.  https://doi.org/10.1111/ahe.12128 CrossRefGoogle Scholar
  23. 23.
    Rekawiecki R, Rutkowska J, Kotwica J (2012) Identification of optimal housekeeping genes for examination of gene expression in bovine corpus luteum. Reprod Biol 12:362–367.  https://doi.org/10.1016/j.repbio.2012.10.010 CrossRefPubMedGoogle Scholar
  24. 24.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25:402–408.  https://doi.org/10.1006/meth.2001.1262 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Skiba M, Mettenleiter TC, Karger A (2008) Quantitative whole-cell proteome analysis of pseudorabies virus-infected cells. J Virol 82:9689–9699.  https://doi.org/10.1128/JVI.00995-08 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Guo L, Yang Y, Liu L et al (2015) A proteomic study of the differential protein expression in MDBK cells after bovine herpesvirus type 1 infection (BHV-1) strain treatment. Int J Clin Exp Med 8:4204–4211PubMedPubMedCentralGoogle Scholar
  27. 27.
    Stokol T, Yeo WM, Burnett D et al (2015) Equid herpesvirus type 1 activates platelets. PLoS One 10:1–20.  https://doi.org/10.1371/journal.pone.0122640 CrossRefGoogle Scholar
  28. 28.
    Quenelle DC, Hartman TL, Buckheit RW et al (2014) Anti-HSV activity of serpin antithrombin III. Int Trends Immun 2:87–92.  https://doi.org/10.1016/j.biotechadv.2011.08.021.Secreted CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Mathew SS, Della Selva MP, Burch AD (2009) Modification and reorganization of the cytoprotective cellular chaperone Hsp27 during herpes simplex virus type 1 infection. J Virol 83:9304–9312.  https://doi.org/10.1128/JVI.01826-08 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Tandon R, Mocarski ES (2012) Viral and host control of cytomegalovirus maturation. Trends MicrobiolGoogle Scholar
  31. 31.
    Tanioka T, Nakatani Y, Kobayashi T et al (2003) Regulation of cytosolic prostaglandin E2synthase by 90-kDa heat shock protein. Biochem Biophys Res Commun 303:1018–1023.  https://doi.org/10.1016/S0006-291X(03)00470-4 CrossRefPubMedGoogle Scholar
  32. 32.
    Kobayashi T, Nakatani Y, Tanioka T et al (2004) Regulation of cytosolic prostaglandin E synthase by phosphorylation. Biochem J 381:59–69.  https://doi.org/10.1042/BJ20040118 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Antrobus R, Grant K, Gangadharan B et al (2009) Proteomic analysis of cells in the early stages of herpes simplex virus type-1 infection reveals widespread changes in the host cell proteome. Proteomics 9:3913–3927.  https://doi.org/10.1002/pmic.200900207 CrossRefPubMedGoogle Scholar
  34. 34.
    Chen PW, Lin SJ, Tsai SC et al (2010) Regulation of microtubule dynamics through phosphorylation on stathmin by epstein-barr virus kinase BGLF4. J Biol Chem 285:10053–10063.  https://doi.org/10.1074/jbc.M109.044420 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Rubin CI, Atweh GF (2004) The role of stathmin in the regulation of the cell cycle. J Cell Biochem 93:242–250.  https://doi.org/10.1002/jcb.20187 CrossRefGoogle Scholar
  36. 36.
    Pizzo E, Sarcinelli C, Sheng J et al (2013) Ribonuclease/angiogenin inhibitor 1 regulates stress-induced subcellular localization of angiogenin and controls its growth and survival activities. J Cell Sci.  https://doi.org/10.1242/jcs.134551 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Li S, Hu G-F (2012) Emerging role of angiogenin in stress response and cell survival under adverse conditions. J Cell Physiol 227:2822–2826.  https://doi.org/10.1002/jcp.23051 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Zhu Y, Das K, Wu J et al (2014) RNH1 regulation of reactive oxygen species contributes to histone deacetylase inhibitor resistance in gastric cancer cells. Oncogene 33:1527–1537.  https://doi.org/10.1038/onc.2013.104 CrossRefPubMedGoogle Scholar
  39. 39.
    Lomonte P, Thomas J, Texier P et al (2004) Functional interaction between class II histone deacetylases and ICP0 of herpes simplex virus type 1. J Virol 78:6744–6757.  https://doi.org/10.1128/JVI.78.13.6744 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Gross H, Hennard C, Masouris I et al (2012) Binding of the heterogeneous ribonucleoprotein K (hnRNP K) to the epstein-barr virus nuclear antigen 2 (EBNA2) enhances viral LMP2A expression. PLoS One 7:1–18.  https://doi.org/10.1371/journal.pone.0042106 CrossRefGoogle Scholar
  41. 41.
    Schmidt T, Striebinger H, Haas J, Bailer SM (2010) The heterogeneous nuclear ribonucleoprotein K is important for herpes simplex virus-1 propagation. FEBS Lett 584:4361–4365.  https://doi.org/10.1016/j.febslet.2010.09.038 CrossRefPubMedGoogle Scholar
  42. 42.
    Piñol-Roma S, Dreyfuss G (1993) Cell cycle-regulated phosphorylation of the pre-mRNA-binding (heterogeneous nuclear ribonucleoprotein) C proteins. Mol Cell Biol 13:5762–5770.  https://doi.org/10.1128/MCB.13.9.5762 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Sanders I, Boyer M, Fraser NW (2015) Early nucleosome deposition on, and replication of, HSV DNA requires cell factor PCNA. J Neurovirol 21:358–369.  https://doi.org/10.1007/s13365-015-0321-7 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Yang S, Pei Y, Zhao A (2017) ITRAQ-based Proteomic Analysis of Porcine Kidney Epithelial PK15 cells Infected with Pseudorabies virus. Sci Rep 7:1–10.  https://doi.org/10.1038/srep45922 CrossRefGoogle Scholar
  45. 45.
    Vértessy GB, Tóth J (2009) Keeping NA: UTPases. Acc Chem Res 42:97–106CrossRefGoogle Scholar
  46. 46.
    Kato A, Arii J, Koyanagi Y, Kawaguchi Y (2015) Phosphorylation of herpes simplex virus 1 dUTPase regulates viral virulence and genome integrity by compensating for low cellular dUTPase activity in the central nervous system. J Virol 89:241–248.  https://doi.org/10.1128/JVI.02497-14 CrossRefPubMedGoogle Scholar
  47. 47.
    Sarek G, Järviluoma A, Moore HM et al (2010) Nucleophosmin phosphorylation by v-cyclin-CDK6 controls KSHV latency. PLoS Pathog.  https://doi.org/10.1371/journal.ppat.1000818 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Zenner HL, Yoshimura S, Barr FA, Crump CM (2011) Analysis of Rab GTPase-activating proteins indicates that Rab1a/b and Rab43 are important for herpes simplex virus 1 secondary envelopment. J Virol 85:8012–8021.  https://doi.org/10.1128/JVI.00500-11 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Li S (2019) Regulation of ribosomal proteins on viral infection. Cells.  https://doi.org/10.3390/cells8050508 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Guo YE, Oei T, Steitz JA (2015) Herpesvirus saimiri MicroRNAs preferentially target host cell cycle regulators. J Virol.  https://doi.org/10.1128/jvi.01884-15 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Qiao G, Zhang M, Li Y et al (2018) Biofloc technology (BFT): an alternative aquaculture system for prevention of Cyprinid herpesvirus 2 infection in gibel carp (Carassius auratus gibelio). Fish Shellfish Immunol.  https://doi.org/10.1016/j.fsi.2018.09.015 CrossRefPubMedGoogle Scholar
  52. 52.
    Böttcher A, Gaipl US, Fürnrohr BG et al (2006) Involvement of phosphatidylserine, αvβ3, CD14, CD36, and complement C1q in the phagocytosis of primary necrotic lymphocytes by macrophages. Arthritis Rheum 54:927–938.  https://doi.org/10.1002/art.21660 CrossRefPubMedGoogle Scholar
  53. 53.
    Munoz LE, Frey B, Pausch F et al (2007) The role of annexin A5 in the modulation of the immune response against dying and dead cells. Curr Med Chem 14:271–277.  https://doi.org/10.2174/092986707779941131 CrossRefPubMedGoogle Scholar
  54. 54.
    Everett RD, Murray J (2005) ND10 components relocate to sites associated with herpes simplex virus type 1 nucleoprotein complexes during virus infection. J Virol 79:5078–5089.  https://doi.org/10.1128/JVI.79.8.5078 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • Marcos J. Magalhães-Junior
    • 1
    • 2
  • Maria Cristina Baracat-Pereira
    • 2
    • 7
    Email author
  • Lorena K. J. Pereira
    • 2
  • Camilo E. Vital
    • 3
  • Marcus R. Santos
    • 4
  • Pricila S. Cunha
    • 6
  • Kenner M. Fernandes
    • 5
  • Gustavo C. Bressan
    • 1
  • Juliana L. R. Fietto
    • 1
  • Abelardo Silva-Júnior
    • 4
  • Márcia R. Almeida
    • 1
  1. 1.Laboratory of Animal Molecular InfectologyFederal University of ViçosaViçosaBrazil
  2. 2.Laboratory of Proteomics and Protein BiochemistryFederal University of ViçosaViçosaBrazil
  3. 3.Nucleus of Biomolecules AnalysisFederal University of ViçosaViçosaBrazil
  4. 4.Laboratory of Immunobiology and Animal VirologyFederal University of ViçosaViçosaBrazil
  5. 5.Laboratory of Cell BiologyFederal University of ViçosaViçosaBrazil
  6. 6.Laboratory of Cell and Molecular ImmunologyFederal University of Minas GeraisBelo HorizonteBrazil
  7. 7.Department of Biochemistry and Molecular BiologyFederal University of ViçosaViçosaBrazil

Personalised recommendations