Advertisement

Cucurbit chlorotic yellows virus p22 is a suppressor of local RNA silencing

  • Chrysoula G. Orfanidou
  • Matthaios M. Mathioudakis
  • Konstantina Katsarou
  • Ioannis Livieratos
  • Nikolaos Katis
  • Varvara I. MaliogkaEmail author
Original Article
  • 28 Downloads

Abstract

RNA silencing is a major antiviral mechanism in plants, which is counteracted by virus-encoded proteins with silencing suppression activity. ORFs encoding putative silencing suppressor proteins that share no structural or sequence homology have been identified in the genomes of four criniviruses. In this study, we investigated the RNA silencing suppression activity of several proteins encoded by the RNA1 (RdRp, p22) and RNA2 (CP, CPm and p26) of cucurbit chlorotic yellows virus (CCYV) using co-agroinfiltration assays on Nicotiana benthamiana plants. Our results indicate that p22 is a suppressor of local RNA silencing that does not interfere with cell-to-cell movement of the RNA silencing signal or with systemic silencing. Furthermore, comparisons of the suppression activity of CCYV p22 with that of two other well-known crinivirus suppressors (CYSDV p25 and ToCV p22) revealed that CCYV p22 is a weaker suppressor of local RNA silencing than the other two proteins. Finally, a comparative sequence analysis of the p22 genes of seven Greek CCYV isolates was performed, revealing a high level of conservation. Taken together, our research advances our knowledge about plant-virus interactions of criniviruses, an emergent group of pathogens that threatens global agriculture.

Keywords

Closteroviridae Crinivirus CCYV RNA silencing suppression 

Notes

Funding

Ms. C. Orfanidou is a recipient of Scholarship by the General Secretariat for Research and Technology (GSRT) and the Hellenic Foundation for Research and Innovation (HFRI) (Scholarship Code: 984). Dr. Konstantina Katsarou was supported by a grant from the General Secretary for Research and Technology of Greece, Infrastructures Support Program [MIS5002803] “PlantUP”.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Pumplin N, Voinnet O (2013) RNA silencing suppression by plant pathogens: defense, counter-defense and counter-counter-defense. Nat Rev Microbiol 11:745–760CrossRefGoogle Scholar
  2. 2.
    Escobar MA, Dandekar AM (2003) Post-transcriptional gene silencing in plants. In: Barciszewski J, Erdmann VA (eds) Noncoding RNAs: molecular biology and molecular medicine. Kluwer Academic/Plenum Publishers, Dordrecht, pp 129–141Google Scholar
  3. 3.
    Carbonell A, Carrington JC (2015) Antiviral roles of plant ARGONAUTES. Curr Opin Plant Biol 27:111–117CrossRefGoogle Scholar
  4. 4.
    Kim YJ, Maizel A, Chen X (2014) Traffic into silence: endomembranes and posttranscriptional RNA silencing. EMBO J 33:968–980CrossRefGoogle Scholar
  5. 5.
    Csorba T, Kontra L, Burgyán J (2015) Viral silencing suppressors: Tools forged to fine-tune host-pathogen coexistence. Virology 479–480:85–103CrossRefGoogle Scholar
  6. 6.
    Kalantidis K, Schumacher HT, Alexiadis T, Helm JM (2008) RNA silencing movement in plants. Biol Cell 100:13–26CrossRefGoogle Scholar
  7. 7.
    Mermigka G, Verret F, Kalantidis K (2016) RNA silencing movement in plants. J Integr Plant Biol 58:328–342CrossRefGoogle Scholar
  8. 8.
    Lakatos L, Szittya G, Silhavy D, Burgyan J (2004) Molecular mechanism of RNA silencing suppression mediated by p19 protein of tombusviruses. EMBO J 23:876–884CrossRefGoogle Scholar
  9. 9.
    Burgyan J, Havelda Z (2011) Viral suppressors of RNA silencing. Trends Plant Sci 16:265–272CrossRefGoogle Scholar
  10. 10.
    Tzanetakis IE, Martin RR, Wintermantel WM (2013) Epidemiology of criniviruses: an emerging problem in world agriculture. Front Microbiol 4:119.  https://doi.org/10.3389/fmicb.2013.00119 CrossRefGoogle Scholar
  11. 11.
    Wisler GC, Duffus JE, Liu HY, Li RH (1998) Ecology and epidemiology of whitefly-transmitted closteroviruses. Plant Dis 82:270–280CrossRefGoogle Scholar
  12. 12.
    Kiss ZA, Medina V, Falk BW (2013) Crinivirus replication and host interactions. Front Microbiol 4:99.  https://doi.org/10.3389/fmicb.2013.00099 CrossRefGoogle Scholar
  13. 13.
    Kreuze JF, Savenkov EI, Cuellar W, Li X, Valkonen JPT (2005) Viral class 1 RNase III involved in suppression of RNA silencing. J Virol 79:7227–7238CrossRefGoogle Scholar
  14. 14.
    Cañizares MN, Navas-Castillo J, Moriones E (2008) Multiple suppressors of RNA silencing encoded by both genomic RNAs of the crinivirus, Tomato chlorosis virus. Virology 379:168–174CrossRefGoogle Scholar
  15. 15.
    Kataya ARA, Suliman MNS, Kalantidis K, Livieratos IC (2009) Cucurbit yellow stunting disorder virus p25 is a suppressor of post-transcriptional gene silencing. Virus Res 145:48–53CrossRefGoogle Scholar
  16. 16.
    Kubota K, Ng JCK (2016) Lettuce chlorosis virus p23 suppresses RNA silencing and induces local necrosis with increased severity at raised temperatures. Phytopathology 106:653–662CrossRefGoogle Scholar
  17. 17.
    Gyoutoku Y, Okazaki S, Furuta A, Etoh T, Mizobe M, Kuno K, Hayashida S, Okuda M (2009) Chlorotic yellows disease of melon caused by Cucurbit chlorotic yellows virus, a new crinivirus. Jpn J Phytopathol 75:109–111CrossRefGoogle Scholar
  18. 18.
    Orfanidou CG, Maliogka VI, Katis NI (2014) First report of Cucurbit chlorotic yellows virus in cucumber, melon, and watermelon in Greece. Plant Dis 98:1446CrossRefGoogle Scholar
  19. 19.
    Lu S, Li J, Wang X, Song D, Bai R, Shi Y, Gu Q, Kuo Y-W, Falk BW, Yan F (2017) A semipersistent plant virus differentially manipulates feeding behaviors of different sexes and biotypes of its whitefly vector. Viruses.  https://doi.org/10.3390/v9010004 Google Scholar
  20. 20.
    Orfanidou CG, Baltzi A, Dimou NA, Katis NI, Maliogka VI (2017) Cucurbit chlorotic yellows virus: insights into its natural host range, genetic variability, and transmission parameters. Plant Dis 101:2053–2058CrossRefGoogle Scholar
  21. 21.
    Okuda M, Okazaki S, Yamasaki S, Okuda S, Sugiyama M (2010) Host range and complete genome sequence of Cucurbit chlorotic yellows virus, a new member of the genus Crinivirus. Phytopathology 100:560–566CrossRefGoogle Scholar
  22. 22.
    Hamilton A, Voinnet O, Chappell L, Baulcombe D (2002) Two classes of short interfering RNA in RNA silencing. EMBO J 21:4671–4679CrossRefGoogle Scholar
  23. 23.
    Tournier B, Tabler M, Kalantidis K (2006) Phloem flow strongly influences the systemic spread of silencing in GFP Nicotiana benthamiana plants. Plant J 47:383–394CrossRefGoogle Scholar
  24. 24.
    Gleave AP (1992) A versatile binary vector system with a T-DNA organizational structure conducive to efficient integration of cloned DNA into the plant genome. Plant Mol Biol 20:1203–1207CrossRefGoogle Scholar
  25. 25.
    Haseloff J, Siemering KR, Prasher DC, Hodgeet S (1997) Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis. PNAS 97:2122–2127CrossRefGoogle Scholar
  26. 26.
    Kościańska E, Kalantidis K, Wypijewski K, Sadowski J, Tabler M (2005) Analysis of RNA silencing in agroinfiltrated leaves of Nicotiana benthamiana and Nicotiana tabacum. Plant Mol Biol 59:647–661CrossRefGoogle Scholar
  27. 27.
    Helm JM, Dadami E, Kalantidis K (2011) Local RNA silencing mediated by agroinfiltration. Methods Mol. Boil. 744:97–108.  https://doi.org/10.1007/978-1-61779-123-9 CrossRefGoogle Scholar
  28. 28.
    Katsarou K, Mitta E, Bardani E, Oulas A, Dadami E, Kalantidis K (2019) DCL-suppressed Nicotiana benthamiana plants: valuable tools in research and biotechnology. Mol Plant Pathol 20:432–446CrossRefGoogle Scholar
  29. 29.
    Costa Â, Marques N, Nolasco G (2014) Citrus tristeza virus p23 may suppress systemic silencing but is not related to the kind of viral syndrome. Physiol Mol Plant Pathol 87:69–75CrossRefGoogle Scholar
  30. 30.
    Liu D, Shi L, Han C, Yu J, Li D, Zhang Y (2012) Validation of reference genes for gene expression studies in virus-infected Nicotiana benthamiana using quantitative real-time PCR. PLoS One 7:e46451CrossRefGoogle Scholar
  31. 31.
    Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res 29:2002–2007CrossRefGoogle Scholar
  32. 32.
    Katsarou K, Mavrothalassiti E, Dermauw W, Van Leeuwen T, Kalantidis K (2016) Combined activity of DCL2 and DCL3 is crucial in the defense against Potato spindle tuber viroid. PLoS Pathog 12(10):e1005936CrossRefGoogle Scholar
  33. 33.
    Silhavy D, Molnar A, Lucioli A, Szittya G, Hornyik C, Tavazza M, Burgyan J (2002) A viral protein suppresses RNA silencing and binds silencing-generated, 21- to 25-nucleotide double-stranded RNAs. EMBO J 21:3070–3080CrossRefGoogle Scholar
  34. 34.
    Himber C, Dunoyer P, Moissiard G, Ritzenthaler C, Voinnet O (2003) Transitivity-dependent and -independent cell-to-cell movement of RNA silencing. EMBO J 22:4523–4533CrossRefGoogle Scholar
  35. 35.
    Silhavy D, Burgyan J (2004) Effects and side-effects of viral RNA silencing suppressors on short RNAs. Trends Plant Sci 9:76–83CrossRefGoogle Scholar
  36. 36.
    Landeo-Ríos YM, Navas-Castillo J, Moriones E, Cañizares MC (2016) The p22 RNA silencing suppressor of the crinivirus Tomato chlorosis virus preferentially binds long dsRNAs preventing them from cleavage. Virology 488:129–136CrossRefGoogle Scholar
  37. 37.
    Cañizares MC, Lozano-Durán R, Canto T, Bejarano ER, Bisaro DM, Navas-Castillo J, Moriones E (2013) Effects of the crinivirus coat protein–interacting plant protein SAHH on post-transcriptional RNA silencing and its suppression. MPMI 26:1004–1015CrossRefGoogle Scholar
  38. 38.
    Cuellar WJ, Kreuze JF, Rajamaki M-L, Cruzado KR, Untiveros M, Valkonen JPT (2009) Elimination of antiviral defense by viral RNase III. PNAS 106:10354–10358CrossRefGoogle Scholar
  39. 39.
    Weinheimer I, Jiu Y, Rajamaki M-L, Matilainen O, Kallijärvi J, Cuellar WJ, Lu R, Saarma M, Holmberg CI, Jäntti J, Valkonen JPT (2014) Suppression of RNAi by dsRNA-degrading RNaseIII enzymes of viruses in animals and plants. PLoS Pathog 11(3):e1004711.  https://doi.org/10.1371/journal.ppat.1004711 CrossRefGoogle Scholar
  40. 40.
    Lu R, Folimonov A, Shintaku M, Li W-X, Falk BW, Dawson WO, Ding S-W (2004) Three distinct suppressors of RNA silencing encoded by a 20-kb viral RNA genome. PNAS 101:15742–15747CrossRefGoogle Scholar
  41. 41.
    Senshu H, Yamaji Y, Minato N, Shiraishi T, Maejima K, Hashimoto M, Miura C, Neriya Y, Namba S (2011) A dual strategy for the suppression of host antiviral silencing: two distinct suppressors for viral replication and viral movement by Potato virus M. J Virol 85:10269–10278CrossRefGoogle Scholar
  42. 42.
    Guo H, Song X, Xie C, Zhang F, Chen X, Geng Y, Fang R (2013) Rice yellow stunt rhabdovirus protein 6 suppresses systemic RNA silencing by blocking RDR6-mediated secondary siRNA synthesis. MPMI 26:927–936CrossRefGoogle Scholar
  43. 43.
    Hedil M, Sterken MG, de Ronde D, Lohuis D, Kormelink R (2015) Analysis of tospovirus NSs proteins in suppression of systemic silencing. PLoS One 10(8):e0134517CrossRefGoogle Scholar
  44. 44.
    Fusaro AF, Barton DA, Nakasugi K, Jackson C, Kalischuk ML, Kawchuk LM, Vaslin MFS, Correa RL, Waterhouse PM (2017) The luteovirus P4 movement protein is a suppressor of systemic RNA silencing. Viruses.  https://doi.org/10.3390/v9100294 Google Scholar
  45. 45.
    Senshu S, Ozeki J, Komatsu K, Hashimoto M, Hatada K, Aoyama M, Kagiwada S, Yamaji Y, Namba S (2009) Variability in the level of RNA silencing suppression caused by triple gene block protein 1 (TGBp1) from various potexviruses during infection. J Gen Virol 90:1014–1024CrossRefGoogle Scholar
  46. 46.
    Rubio L, Abou-Jawdah Y, Lin H-X, Falk BW (2001) Geographically distant isolates of the crinivirus Cucurbit yellow stunting disorder virus show very low genetic diversity in the coat protein gene. J Gen Virol 82:929–933CrossRefGoogle Scholar
  47. 47.
    Orílio A, Navas-Castillo J (2009) The complete nucleotide sequence of the RNA2 of the crinivirus tomato infectious chlorosis virus: Isolates from North America and Europe are essentially identical. Arch Virol 154:683–687CrossRefGoogle Scholar
  48. 48.
    Orfanidou CG, Dimitriou C, Papayiannis LC, Maliogka VI, Katis NI (2014) Epidemiology and genetic diversity of criniviruses associated with Tomato yellows disease in Greece. Virus Res 186:120–129CrossRefGoogle Scholar
  49. 49.
    Akhter MS, Bhor SA, Hlalele N, Nao M, Sekine K-T, Yaeno T, Yamaoka N, Nishiguchi M, Gubba A, Kobayashi K (2016) Review of Beet pseudoyellows virus genome structure built the consensus genome organization of cucumber strains and highlighted the unique feature of strawberry strain. Virus Genes 52:828–834CrossRefGoogle Scholar
  50. 50.
    Landeo-Ríos YM, Navas-Castillo J, Moriones E, Cañizares MC (2015) Genetic diversity and silencing suppression activity of the p22 protein of Tomato chlorosis virus isolates from tomato and sweet pepper. Virus Genes 51:283–289CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Plant Pathology Laboratory, Faculty of Agriculture, Forestry and Natural Environment, School of AgricultureAristotle University of ThessalonikiThessalonikiGreece
  2. 2.Department of Sustainable AgricultureMediterranean Agronomic Institute of Chania, Alsylio AgrokepioChaniaGreece
  3. 3.Department of BiologyUniversity of CreteHeraklionGreece
  4. 4.Institute for Olive tree, Subtropical crops and Viticulture, Plant Pathology LaboratoryHellenic Agricultural Organization-“DEMETER”ChaniaGreece

Personalised recommendations