Advertisement

Impact of CYP2R1, CYP27A1 and CYP27B1 genetic polymorphisms controlling vitamin D metabolism on susceptibility to hepatitis C virus infection in a high-risk Chinese population

  • Jing-jing Yang
  • Hao-zhi Fan
  • Ting Tian
  • Meng-ping Wu
  • Chao-nan Xie
  • Peng Huang
  • Rong-bin Yu
  • Hong-Gang Yi
  • Yun Zhang
  • Jie WangEmail author
Original Article

Abstract

CYP27A1, CYP2R1 and CYP27B1 hydroxylases are involved in the synthesis of 1, 25-hydroxyvitamin D3, which plays a role in the immune regulation and pathogenesis of hepatitis C virus (HCV) infection. The aim of the present study was to investigate the relationships between polymorphisms in vitamin D pathway genes and HCV infection outcomes in a Chinese population. Nine single-nucleotide polymorphisms (SNPs) of CYP27A1, CYP2R1 and CYP27B1 were genotyped in a high-risk Chinese population. The distributions of these SNPs were compared among groups with different outcomes of HCV infection, including 863 cases of persistent HCV infection, 524 cases of spontaneous clearance, and 1079 uninfected controls. The results showed that the CYP2R1 rs12794714-G, rs10741657-A, rs1562902-C, and rs10766197-G alleles were significantly associated with increased susceptibility to HCV infection (all PFDR < 0.05, in additive/dominant models), and the combined effect of the four unfavorable alleles was related to an elevated risk of HCV infection in a locus-dosage manner (Ptrend = 0.008). Moreover, haplotype analysis suggested that, compared with the most frequent haplotype (Ars12794714Grs10741657Trs1562902Ars10766197), the haplotype containing four unfavorable alleles, GACG, was associated with a higher risk of HCV infection. The results of our study suggest that genetic variants in CYP2R1 may be biomarkers for predicting the susceptibility to HCV infection in the Chinese population.

Notes

Acknowledgements

We thank all students, doctors and nurses who have worked in this study. We also thank the staff from the Nanjing Compulsory Detoxification Center, the Jurong People’s Hospital, and the other hospitals for organization of the field investigation and detection of serological samples. This research would not have been possible without the consent and help of the participants. The current study was financially supported by the National Natural Science Foundation of China (Grant nos. 81473028, 81773499 and 81703273), the Natural Science Foundation of Jiangsu Province, China (Grant no. BK20181369 and BK20171054), the Qing Lan Project, and the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD, [2018] 87).

Author contributions

JW designed and organized the study. JY, HF, TT, MW, C-NX and PH contributed to the planning, designing and analyses of the experiments, data collection and quality control. J-JY, HF and TT performed the statistical analysis. RY and YZ provided materials and analysis tools. JY, HF and JW wrote and critically revised the manuscript. All authors read and approved the final manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

705_2019_4378_MOESM1_ESM.doc (94 kb)
Supplementary material 1 (DOC 93 kb)

References

  1. 1.
    Thrift AP, El-Serag HB, Kanwal F (2017) Global epidemiology and burden of HCV infection and HCV-related disease. Nat Rev Gastroenterol Hepatol 14(2):122–132CrossRefGoogle Scholar
  2. 2.
    Mohd Hanafiah K, Groeger J, Flaxman AD, Wiersma ST (2013) Global epidemiology of hepatitis C virus infection: new estimates of age-specific antibody to HCV seroprevalence. Hepatology (Baltimore, Md) 57(4):1333–1342CrossRefGoogle Scholar
  3. 3.
    WHO (2016) Guidelines for the screening, care and treatment of persons with chronic hepatitis C infection Updated version. WHO, GenevaGoogle Scholar
  4. 4.
    Shi J, Li Y, Chang W, Zhang X, Wang FS (2017) Current progress in host innate and adaptive immunity against hepatitis C virus infection. Hepatol Int 11(4):374–383CrossRefGoogle Scholar
  5. 5.
    Webster DP, Klenerman P, Dusheiko GM (2015) Hepatitis C. Lancet 385(9973):1124–1135CrossRefGoogle Scholar
  6. 6.
    Prokunina-Olsson L, Muchmore B, Tang W, Pfeiffer RM, Park H, Dickensheets H, Hergott D, Porter-Gill P, Mumy A, Kohaar I et al (2013) A variant upstream of IFNL3 (IL28B) creating a new interferon gene IFNL4 is associated with impaired clearance of hepatitis C virus. Nat Genet 45(2):164–171CrossRefGoogle Scholar
  7. 7.
    Tian T, Wang J, Huang P, Li J, Yu R, Fan H, Xia X, Han Y, Zhang Y, Yue M (2018) Genetic variations in NF-kappaB were associated with the susceptibility to hepatitis C virus infection among Chinese high-risk population. Sci Rep 8(1):104CrossRefGoogle Scholar
  8. 8.
    Prietl B, Treiber G, Pieber TR, Amrein K (2013) Vitamin D and immune function. Nutrients 5(7):2502–2521CrossRefGoogle Scholar
  9. 9.
    Vanherwegen AS, Gysemans C, Mathieu C (2017) Regulation of immune function by vitamin D and its use in diseases of immunity. Endocrinol Metab Clin N Am 46(4):1061–1094CrossRefGoogle Scholar
  10. 10.
    Melo-Villar LE, de Almeida AJ, de Scalioni PL, Lewis-Ximenez LL, Miguel JC, Del Campo JA, Ranchal I, Villela-Nogueira CA, Romero-Gomez M (2015) Hypovitaminosis D and its relation to demographic and laboratory data among hepatitis C patients. Ann Hepatol 14(4):457–463CrossRefGoogle Scholar
  11. 11.
    Backstedt D, Pedersen M, Choi M, Seetharam A (2017) 25-Vitamin D levels in chronic hepatitis C infection: association with cirrhosis and sustained virologic response. Ann Gastroenterol 30(3):344–348Google Scholar
  12. 12.
    Dadabhai AS, Saberi B, Lobner K, Shinohara RT, Mullin GE (2017) Influence of vitamin D on liver fibrosis in chronic hepatitis C: a systematic review and meta-analysis of the pooled clinical trials data. World J Hepatol 9(5):278–287CrossRefGoogle Scholar
  13. 13.
    Garcia-Alvarez M, Pineda-Tenor D, Jimenez-Sousa MA, Fernandez-Rodriguez A, Guzman-Fulgencio M, Resino S (2014) Relationship of vitamin D status with advanced liver fibrosis and response to hepatitis C virus therapy: a meta-analysis. Hepatology (Baltimore, Md) 60(5):1541–1550CrossRefGoogle Scholar
  14. 14.
    Villar LM, Del Campo JA, Ranchal I, Lampe E, Romero-Gomez M (2013) Association between vitamin D and hepatitis C virus infection: a meta-analysis. World J Gastroenterol 19(35):5917–5924CrossRefGoogle Scholar
  15. 15.
    Jimenez-Sousa MA, Martinez I, Medrano LM, Fernandez-Rodriguez A, Resino S (2018) Vitamin D in human immunodeficiency virus infection: influence on immunity and disease. Front Immunol 9:458CrossRefGoogle Scholar
  16. 16.
    Jin CN, Chen JD, Sheng JF (2018) Vitamin D deficiency in hepatitis C virus infection: what is old? What is new? Eur J Gastroenterol Hepatol 30(7):741–746CrossRefGoogle Scholar
  17. 17.
    Thomas J, Wang FZ, Brent Richards J, Kestenbaum Bryan, Joyce B, van Meurs DB, Kiel Douglas, Streeten Elizabeth A, Ohlsson Claes et al (2010) Common genetic determinants of vitamin D insufficiency: a genome-wide association study. Lancet 376(9736):180–188CrossRefGoogle Scholar
  18. 18.
    Ahn J, Yu K, Stolzenberg-Solomon R, Simon KC, McCullough ML, Gallicchio L, Jacobs EJ, Ascherio A, Helzlsouer K, Jacobs KB et al (2010) Genome-wide association study of circulating vitamin D levels. Hum Mol Genet 19(13):2739–2745CrossRefGoogle Scholar
  19. 19.
    Petersen RA, Larsen LH, Damsgaard CT, Sorensen LB, Hjorth MF, Andersen R, Tetens I, Krarup H, Ritz C, Astrup A et al (2017) Common genetic variants are associated with lower serum 25-hydroxyvitamin D concentrations across the year among children at northern latitudes. Br J Nutr 117(6):829–838CrossRefGoogle Scholar
  20. 20.
    Robien K, Butler LM, Wang R, Beckman KB, Walek D, Koh WP, Yuan JM (2013) Genetic and environmental predictors of serum 25-hydroxyvitamin D concentrations among middle-aged and elderly Chinese in Singapore. Br J Nutr 109(3):493–502CrossRefGoogle Scholar
  21. 21.
    McGrath JJ, Saha S, Burne TH, Eyles DW (2010) A systematic review of the association between common single nucleotide polymorphisms and 25-hydroxyvitamin D concentrations. J Steroid Biochem Mol Biol 121(1–2):471–477CrossRefGoogle Scholar
  22. 22.
    O’Brien KM, Sandler DP, Shi M, Harmon QE, Taylor JA, Weinberg CR (2018) Genome-wide association study of serum 25-hydroxyvitamin D in US women. Front Genet 9:67CrossRefGoogle Scholar
  23. 23.
    Manousaki D, Dudding T, Haworth S, Hsu YH, Liu CT, Medina-Gomez C, Voortman T, van der Velde N, Melhus H, Robinson-Cohen C et al (2017) Low-frequency synonymous coding variation in CYP2R1 has large effects on vitamin D levels and risk of multiple sclerosis. Am J Hum Genet 101(2):227–238CrossRefGoogle Scholar
  24. 24.
    Frederiksen BN, Kroehl M, Fingerlin TE, Wong R, Steck AK, Rewers M, Norris JM (2013) Association between vitamin D metabolism gene polymorphisms and risk of islet autoimmunity and progression to type 1 diabetes: the diabetes autoimmunity study in the young (DAISY). J Clin Endocrinol Metab 98(11):E1845–E1851CrossRefGoogle Scholar
  25. 25.
    Inoue N, Watanabe M, Ishido N, Katsumata Y, Kagawa T, Hidaka Y, Iwatani Y (2014) The functional polymorphisms of VDR, GC and CYP2R1 are involved in the pathogenesis of autoimmune thyroid diseases. Clin Exp Immunol 178(2):262–269CrossRefGoogle Scholar
  26. 26.
    Boglione L, Cusato J, De Nicolo A, Cariti G, Di Perri G, D’Avolio A (2015) Role of CYP27B1 + 2838 promoter polymorphism in the treatment of chronic hepatitis B HBeAg negative with PEG-interferon. J Viral Hepat 22(3):318–327CrossRefGoogle Scholar
  27. 27.
    Cusato J, Boglione L, De Nicolo A, Imbornone R, Cardellino CS, Ghisetti V, Carcieri C, Cariti G, Di Perri G, D’Avolio A (2017) Association of vitamin D pathway SNPs and clinical response to interferon in a cohort of HBeAg-negative patients. Pharmacogenomics 18(7):651–661CrossRefGoogle Scholar
  28. 28.
    Petta S, Grimaudo S, Marco VD, Scazzone C, Macaluso FS, Camma C, Cabibi D, Pipitone R, Craxi A (2013) Association of vitamin D serum levels and its common genetic determinants, with severity of liver fibrosis in genotype 1 chronic hepatitis C patients. J Viral Hepat 20(7):486–493CrossRefGoogle Scholar
  29. 29.
    El-Derany MO, Hamdy NM, Al-Ansari NL, El-Mesallamy HO (2016) Integrative role of vitamin D related and interleukin-28B genes polymorphism in predicting treatment outcomes of chronic hepatitis C. BMC Gastroenterol 16:19CrossRefGoogle Scholar
  30. 30.
    Thanapirom K, Suksawatamnuay S, Sukeepaisarnjaroen W, Tangkijvanich P, Treeprasertsuk S, Thaimai P, Wasitthankasem R, Poovorawan Y, Komolmit P (2017) Vitamin D-related gene polymorphism predict treatment response to pegylated interferon-based therapy in Thai chronic hepatitis C patients. BMC Gastroenterol 17(1):54CrossRefGoogle Scholar
  31. 31.
    Falleti E, Cmet S, Fabris C, Fattovich G, Cussigh A, Bitetto D, Ceriani E, Lenisa I, Dissegna D, Ieluzzi D et al (2013) Genetic polymorphisms of vitamin D pathway predict antiviral treatment outcome in slow responder naive patients with chronic hepatitis C. PLoS One 8(11):e80764CrossRefGoogle Scholar
  32. 32.
    Xue XX, Gong JM, Tang SD, Gao CF, Wang JJ, Cai L, Wang J, Yu RB, Peng ZH, Fan NJ et al (2015) Single nucleotide polymorphisms of toll-like receptor 7 in hepatitis C virus infection patients from a high-risk chinese population. Inflammation 38(1):142–151CrossRefGoogle Scholar
  33. 33.
    Yue M, Xu K, Wu MP, Han YP, Huang P, Peng ZH, Wang J, Su J, Yu RB, Li J et al (2015) Human leukocyte antigen class II alleles are associated with hepatitis C virus natural susceptibility in the Chinese population. Int J Mol Sci 16(8):16792–16805CrossRefGoogle Scholar
  34. 34.
    Cai L, Gao C, Tang S, Wang J, Xue X, Yue M, Deng X, Su J, Peng Z, Lu Y et al (2014) Sex-specific association of estrogen receptor 2 polymorphisms with hepatitis C virus infection outcomes in a high-risk Chinese Han population. Infect Genet Evol 28:118–124CrossRefGoogle Scholar
  35. 35.
    Fan HZ, Huang P, Shao JG, Tian T, Li J, Zang F, Liu M, Xue H, Wu JJ, Yu RB et al (2018) Genetic variation on the NFKB1 genes associates with the outcomes of HCV infection among Chinese Han population. Infect Genet Evol 65:210–215CrossRefGoogle Scholar
  36. 36.
    Soininen S, Eloranta AM, Viitasalo A, Dion G, Erkkila A, Sidoroff V, Lindi V, Mahonen A, Lakka TA (2018) Serum 25-hydroxyvitamin D, plasma lipids, and associated gene variants in prepubertal children. J Clin Endocrinol Metab 103(7):2670–2679CrossRefGoogle Scholar
  37. 37.
    Nissen J, Rasmussen LB, Ravn-Haren G, Andersen EW, Hansen B, Andersen R, Mejborn H, Madsen KH, Vogel U (2014) Common variants in CYP2R1 and GC genes predict vitamin D concentrations in healthy Danish children and adults. PLoS One 9(2):e89907CrossRefGoogle Scholar
  38. 38.
    Thanapirom K, Suksawatamnuay S, Sukeepaisarnjareon W, Tanwandee T, Charatcharoenwitthaya P, Thongsawat S, Leerapun A, Piratvisuth T, Boonsirichan R, Bunchorntavakul C et al (2017) Genetic variation in the vitamin D pathway CYP2R1 gene predicts sustained HBeAg seroconversion in chronic hepatitis B patients treated with pegylated interferon: a multicenter study. PLoS One 12(3):e0173263CrossRefGoogle Scholar
  39. 39.
    de Azevedo LA, Matte U, da Silveira TR, Alvares-da-Silva MR (2017) Genetic variants underlying vitamin D metabolism and VDR-TGFbeta-1-SMAD3 interaction may impact on HCV progression: a study based on dbGaP data from the HALT-C study. J Hum Genet 62(11):969–977CrossRefGoogle Scholar
  40. 40.
    Junaid K, Rehman A, Saeed T, Jolliffe DA, Wood K, Martineau AR (2015) Genotype-independent association between profound vitamin D deficiency and delayed sputum smear conversion in pulmonary tuberculosis. BMC Infect Dis 15:275CrossRefGoogle Scholar
  41. 41.
    Junaid K, Rehman A, Jolliffe DA, Saeed T, Wood K, Martineau AR (2016) Vitamin D deficiency associates with susceptibility to tuberculosis in Pakistan, but polymorphisms in VDR, DBP and CYP2R1 do not. BMC Pulm Med 16(1):73CrossRefGoogle Scholar
  42. 42.
    Farh KK, Marson A, Zhu J, Kleinewietfeld M, Housley WJ, Beik S, Shoresh N, Whitton H, Ryan RJ, Shishkin AA et al (2015) Genetic and epigenetic fine mapping of causal autoimmune disease variants. Nature 518(7539):337–343CrossRefGoogle Scholar
  43. 43.
    Hnisz D, Abraham BJ, Lee TI, Lau A, Saint-Andre V, Sigova AA, Hoke HA, Young RA (2013) Super-enhancers in the control of cell identity and disease. Cell 155(4):934–947CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Hohai University HospitalHohai UniversityNanjingChina
  2. 2.Department of Epidemiology, School of Public HealthNanjing Medical UniversityNanjingChina
  3. 3.Jiangsu Provincial Center for Disease Control and PreventionNanjingChina
  4. 4.Department of InformationThe First People’s Hospital of LianyungangLianyungangChina
  5. 5.Nanjing Qixia Health Inspection InstituteNanjingChina
  6. 6.Department of Biostatistics, School of Public HealthNanjing Medical UniversityNanjingChina
  7. 7.Institute of Epidemiology and Microbiology, Huadong Research Institute for Medicine and BiotechnicsNanjingChina
  8. 8.Department of Fundamental and Community Nursing, School of NursingNanjing Medical UniversityNanjingChina

Personalised recommendations