The major oligosaccharyl transferase complex genes are not involved in dengue virus replication in Aedes aegypti mosquitoes

  • Hugo D. Perdomo
  • Sassan AsgariEmail author
Brief Report


Replication of the dengue virus (DENV) genome occurs in a vesicle in the endoplasmic reticulum by a complex of host and viral proteins. Two host proteins, STT3A and STT3B, as members of the oligosaccharyl transferase complex, have been implicated in playing structural roles in the vesicle in mammalian cells, and the absence of these proteins has been shown to decrease DENV replication. Aedes aegypti is the main vector of the virus and has been used previously as a model organism to study mosquito-virus interactions. In this study, we found that genes of the oligosaccharyl transferase complex have no effect on replication of DENV in mosquito cells.



The authors would like to thank Dr. Daniel Watterson and Professor Paul Young from the University of Queensland for providing anti-DENV-2 antibodies used for virus titration. This project was supported by an Australian Research Council (DP150101782) to SA, and a University of Queensland scholarship to HDP.

Supplementary material

705_2019_4376_MOESM1_ESM.docx (12 kb)
Supplementary material 1 (DOCX 12 kb)


  1. 1.
    Guzman MG, Harris E (2015) Dengue. Lancet 385:453–465CrossRefGoogle Scholar
  2. 2.
    Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, Drake JM, Brownstein JS, Hoen AG, Sankoh O, Myers MF, George DB, Jaenisch T, Wint GR, Simmons CP, Scott TW, Farrar JJ, Hay SI (2013) The global distribution and burden of dengue. Nature 496:504–507CrossRefGoogle Scholar
  3. 3.
    Lindenbach BD, Rice CM (2003) Molecular biology of flaviviruses. Adv Virus Res 59:23–61CrossRefGoogle Scholar
  4. 4.
    Bartenschlager R, Miller S (2008) Molecular aspects of Dengue virus replication. Future Microbiol 3:155–165CrossRefGoogle Scholar
  5. 5.
    Klema VJ, Padmanabhan R, Choi KH (2015) Flaviviral replication complex: coordination between RNA synthesis and 5’-RNA capping. Viruses 7:4640–4656CrossRefGoogle Scholar
  6. 6.
    McIntosh R, Nicastro D, Mastronarde D (2005) New views of cells in 3D: an introduction to electron tomography. Trends Cell Biol 15:43–51CrossRefGoogle Scholar
  7. 7.
    Miller S, Kastner S, Krijnse-Locker J, Bühler S, Bartenschlager R (2007) The non-structural protein 4A of dengue virus is an integral membrane protein inducing membrane alterations in a 2K-regulated manner. J Biol Chem 282:8873–8882CrossRefGoogle Scholar
  8. 8.
    Miller S, Sparacio S, Bartenschlager R (2006) Subcellular localization and membrane topology of the dengue virus type 2 non-structural protein 4B. J Biol Chem 281:8854–8863CrossRefGoogle Scholar
  9. 9.
    Schwarz F, Aebi M (2011) Mechanisms and principles of N-linked protein glycosylation. Curr Opin Struct Biol 21:576–582CrossRefGoogle Scholar
  10. 10.
    Kelleher DJ, Gilmore R (2006) An evolving view of the eukaryotic oligosaccharyltransferase. Glycobiology 16:47R–62RCrossRefGoogle Scholar
  11. 11.
    Marceau CD, Puschnik AS, Majzoub K, Ooi YS, Brewer SM, Fuchs G, Swaminathan K, Mata MA, Elias JE, Sarnow P, Carette JE (2016) Genetic dissection of Flaviviridae host factors through genome-scale CRISPR screens. Nature 535:159–163CrossRefGoogle Scholar
  12. 12.
    Savidis G, McDougall WM, Meraner P, Perreira JM, Portmann JM, Trincucci G, John SP, Aker AM, Renzette N, Robbins DR, Guo Z, Green S, Kowalik TF, Brass AL (2016) Identification of Zika virus and dengue virus dependency factors using functional genomics. Cell Rep 16:232–246CrossRefGoogle Scholar
  13. 13.
    Zhang R, Miner JJ, Gorman MJ, Rausch K, Ramage H, White JP, Zuiani A, Zhang P, Fernandez E, Zhang Q, Dowd KA, Pierson TC, Cherry S, Diamond MS (2016) A CRISPR screen defines a signal peptide processing pathway required by flaviviruses. Nature 535:164–168CrossRefGoogle Scholar
  14. 14.
    Puschnik AS, Marceau CD, Ooi YS, Majzoub K, Rinis N, Contessa JN, Carette JE (2017) A small-molecule oligosaccharyltransferase inhibitor with pan-flaviviral activity. Cell Rep 21:3032–3039CrossRefGoogle Scholar
  15. 15.
    Lopez-Sambrooks C, Shrimal S, Khodier C, Flaherty DP, Rinis N, Charest JC, Gao N, Zhao P, Wells L, Lewis TA (2016) Oligosaccharyltransferase inhibition induces senescence in RTK-driven tumor cells. Nat Chem Biol 12:1023–1030CrossRefGoogle Scholar
  16. 16.
    Leta S, Beyene TJ, De Clercq EM, Amenu K, Kraemer MU, Revie CW (2018) Global risk mapping for major diseases transmitted by Aedes aegypti and Aedes albopictus. Int J Infect Dis 67:25–35CrossRefGoogle Scholar
  17. 17.
    Black WC IV, Bennett KE, Gorrochótegui-Escalante N, Barillas-Mury CV, Fernández-Salas I, de Lourdes Muñoz MA, Farfán-Alé JA, Olson KE, Beaty BJ (2002) Flavivirus susceptibility in Aedes aegypti. Arch Med Res 33:379–388CrossRefGoogle Scholar
  18. 18.
    Asad S, Hussain M, Hugo L, Osei-Amo S, Zhang G, Watterson D, Asgari S (2018) Suppression of the pelo protein by Wolbachia and its effect on dengue virus in Aedes aegypti. PLoS Negl Trop Dis 12:e0006405CrossRefGoogle Scholar
  19. 19.
    Junjhon J, Pennington JG, Edwards TJ, Perera R, Lanman J, Kuhn RJ (2014) Ultrastructural characterization and three-dimensional architecture of replication sites in dengue virus-infected mosquito cells. J Virol 88:4687–4697CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Australian Infectious Disease Research Centre, School of Biological SciencesThe University of QueenslandBrisbaneAustralia

Personalised recommendations