Archives of Virology

, Volume 164, Issue 10, pp 2545–2549 | Cite as

A mycoparasitic and opportunistic fungus is inhabited by a mycovirus

  • Karel PetrzikEmail author
  • Abu Bakar Siddique
Brief Report


A novel bisegmented double-stranded RNA virus was identified in the mycoparasitic and opportunistic fungus Hypomyces chrysospermus. The RNA1 genome segment comprises 1866 bp and encodes an RNA-dependent RNA polymerase (RdRp). The RNA2 segment comprises 1822 bp and encodes a capsid protein. Phylogenetic analysis of the RdRp protein indicated that this virus is a new member of genus Alphapartitivirus in the family Partitiviridae. We have designated this mycovirus as “Hypomyces chrysospermus partitivirus 1” (HcPV1). HcPV1 is highly transmissible with aleurioconidia and is present in large amounts within growing mycelium in comparison to the GAPDH reference gene.



This work was funded by institutional support RVO60077344 and Grant MEMOBiC of the Ministry of Education, Youth and Sports of the Czech Republic.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any experiments involving human participants or animals.

Supplementary material

705_2019_4359_MOESM1_ESM.docx (77 kb)
Supplementary material 1 (DOCX 77 kb)


  1. 1.
    Sahr T, Ammer H, Besl H, Fischer M (1999) Infrageneric classification of the boleticolous genus Sepedonium: species delimitation and phylogenetic relationships. Mycologia 91:935–943CrossRefGoogle Scholar
  2. 2.
    Kaygusuz O, Çolak Ö, Türkenul İ (2018) A new genus record for the macrofungi of Turkey of a fungicolous and mycoparasitic species, Hypomyces chrysospermus Tul. & C. Tul. (Hypocreaceae de not.). Feddes Repert 129:241–246CrossRefGoogle Scholar
  3. 3.
    Põldmaa K (2011) Tropical species of Cladobotryum and Hypomyces producing red pigments. Stud Mycol 68:1–34CrossRefGoogle Scholar
  4. 4.
    Rogerson CT, Samuels GJ (1989) Boleticolous species of Hypomyces. Mycologia 81:413–432CrossRefGoogle Scholar
  5. 5.
    Gené J, Verdejo-Lucas S, Stchigel AM, Sorribas FJ, Guarro J (2014) Microbial parasites associated with Tylenchulus semipenetrans in citrus orchards of Catalonia, Spain. Biocontrol Sci Technol 15:721–731CrossRefGoogle Scholar
  6. 6.
    Ng KP, Soo-Hoo T, Na SLN, Tan LH (2003) Sepedonium species: an emerging opportunistic fungal infection in a patient with AIDS. Clin Microbiol Newsl 25:20–22CrossRefGoogle Scholar
  7. 7.
    Arellano-Galindo J, Vázkquez-Meraz E, Jiménez-Hernándes E, Reséndiz-Sánchez J, Martínez-Rivera MÁ, Jiménez-Juárez RN, Xicohtencatl-Cortes J, Ochoa SA, Cruz-Córdoba A (2017) A saprophytic fungus (Sepedonium) associated with fatal pneumonia in a patient undergoing stem cell transplantation. J Int Med Res 45:1430–1434CrossRefGoogle Scholar
  8. 8.
    Hülsmann H, Heinze S, Ritzau M, Schlegel B, Gräfe U (1998) Isolation and structure of peptaibolin, new peptaibol from Sepedonium strains. J Antibiot 51:1055–1058CrossRefGoogle Scholar
  9. 9.
    Mitova MI, Stuart BG, Cao GH, Blunt JW, Cole ALJ, Munro MHG (2006) Chrysosporide, a cyclic pentapeptide from a New Zealand sample of the fungus Sepedonium chrysospermum. J Nat Prod 69:1481–1484CrossRefGoogle Scholar
  10. 10.
    Mitova MI, Murphy AC, Lang G, Blunt JW, Cole ALJ, Munro MHG (2008) Evolving trends in the dereplication of natural product extracts. 2. The isolation of chrysaibol, an antibiotic peptaibol from a New Zealand sample of the mycoparasitic fungus Sepedonium chrysospermum. J Nat Prod 71:1600–1603CrossRefGoogle Scholar
  11. 11.
    Sanguineti E, Cosulich ME, Salis A, Damonte G, Mariotti MG, Zotti M (2012) A hemolytic peptide from the mycophilic fungus Sepedonium chrysospermum (Bull.) Fr. Appl Microbiol Biotechnol 94:987–994CrossRefGoogle Scholar
  12. 12.
    Chun J, Yang H-E, Kim D-H (2018) Identification and molecular characterization of a novel partitivirus from Trichoderma atroviridae NFCF394. Viruses 10:578CrossRefGoogle Scholar
  13. 13.
    Chun J, Yang H-E, Kim D-H (2018) Identification of a novel partitivirus of Trichoderma harzianum NFCF319 and evidence for the related antifungal activity. Front Plant Sci 9:1699CrossRefGoogle Scholar
  14. 14.
    Zhang T, Zeng X, Cai X, Liu H, Zeng Z (2018) Molecular characterization of a novel double-stranded RNA mycovirus of Trichodera asperellum strain JLM45-3. Arch Virol 163:3433–3437CrossRefGoogle Scholar
  15. 15.
    Lee SH, Yun SH, Chun J, Kim DH (2017) Characterization of a novel dsRNA mycovirus of Trichoderma atroviride NFCF028. Arch Virol 162:1073–1077CrossRefGoogle Scholar
  16. 16.
    Yun SH, Lee SH, So KK, Kim JM, Kim DH (2016) Incidence of diverse dsRNA mycoviruses in Trichoderma spp. causing green mold disease of shiitake Lentinula edodes. SEMS Microbiol Lett 363:220CrossRefGoogle Scholar
  17. 17.
    Sahr T, Ammer H, Besl H, Fischer M (1999) Infrageneric classification of the boleticolous genus Sepedonium: species delimination and phylogenetic relationships. Mycologia 91:935–943CrossRefGoogle Scholar
  18. 18.
    White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols. A guide to methods and applications. Academic Press, New York, pp 315–322Google Scholar
  19. 19.
    Morris T, Dodds J (1979) Isolation and analysis of double-stranded RNA from virus-infected plant and fungal tissue. Phytopathology 69:854–858CrossRefGoogle Scholar
  20. 20.
    Darissa O, Willingmann P, Adam G (2010) Optimized approaches for the sequence determination of double-stranded RNA templates. J Virol Methods 169:397–403CrossRefGoogle Scholar
  21. 21.
    Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874CrossRefGoogle Scholar
  22. 22.
    Kumaruzzaman M, He G, Wu M, Zhang J, Yang L, Chen W, Li G (2019) A novel partitivirus in the hypovirulent isolate QT5-19 pf the plant pathogenic fungus Botrytis cinerea. Viruses 11:24CrossRefGoogle Scholar
  23. 23.
    Nibert ML, Ghabrial SA, Maiss E, Lesker T, Vainio EJ, Jiang D, Suzuki N (2014) Taxonomic reorganization of family Partitiviridae and other recent progress in partitivirus research. Virus Res 188:128–141CrossRefGoogle Scholar
  24. 24.
    Da S, Da S (2019) First report of a novel alphapartitivirus in the basidiomycete Rhizoctonia oryzae-sativae. Arch Virol 164:889–892CrossRefGoogle Scholar
  25. 25.
    Chiba S, Lin YH, Kondo H, Kanematsu S, Suzuki N (2016) A novel betapartitivirus RnPV6 from Rosellinia necatrix tolerates host RNA silencing but is interfered by its defective RNAs. Virus Res 219:62–72CrossRefGoogle Scholar
  26. 26.
    Gao JX, Chen J (2018) Transcriptome analysis identifies candidate genes associated with melanin and toxin biosynthesis and pathogenicity of the maize pathogen, Curvularia lunata. J Phytopathol 166:233–241CrossRefGoogle Scholar
  27. 27.
    Yogo N, Shapiro L, Erlandson K (2014) Sepedonium intra-abdominal infection: a case report and review of an emerging fungal infection. J Antimicrob Chemoth 69:2583–2585CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Plant VirologyInstitute of Plant Molecular Biology, Biology Centre of the Czech Academy of SciencesČeské BudějoviceCzech Republic

Personalised recommendations