Advertisement

Molecular detection and characterization of genotype 1 bovine leukemia virus from beef cattle in the traditional sector in Zambia

  • Mundia M. Phiri
  • Evans Kaimoyo
  • Katendi Changula
  • Isaac Silwamba
  • Herman M. Chambaro
  • Penjaninge Kapila
  • Masahiro Kajihara
  • Martin Simuunza
  • John Bwalya Muma
  • Girja S. Pandey
  • Ayato Takada
  • Aaron S. Mweene
  • Simbarashe Chitanga
  • Edgar SimulunduEmail author
Brief Report

Abstract

Whilst bovine leukemia virus (BLV) causes considerable economic losses to the dairy industry worldwide, information on its molecular epidemiology and economic impact in beef cattle is limited. Here, blood from 880 animals from Zambia’s major cattle-rearing provinces was screened for BLV by nested PCR. Positive pools were sequenced and phylogenetically analyzed. The estimated pooled prevalence was 2.1%. All strains belonged to genotype 1 and formed a distinct phylogenetic cluster. The study suggests circulation of genotype 1 BLV in beef cattle in these regions. This is the first report on molecular detection and characterization of BLV from beef cattle in Africa.

Notes

Acknowledgements

This work was supported by the Japan Initiative for Global Research Network on Infectious Diseases (J-GRID) and the Japan Agency for Medical Research and Development (AMED)/Japan International Cooperation Agency (JICA) within the framework of the Science and Technology Research Partnership for Sustainable Development (SATREPS).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with animals performed by any of the authors.

References

  1. 1.
    Ooshiro M, Konnai S, Katagiri Y, Afuso M, Arakaki N, Tsuha O, Murata S, Ohashi K (2013) Horizontal transmission of bovine leukemia virus from lymphocytotic cattle, and beneficial effects of insect vector control. Vet Rec 173:527CrossRefGoogle Scholar
  2. 2.
    Juliarena MA, Barrios NC, Lützelschwab MC, Esteban EN, Gutiérrez SE (2017) Bovine leukemia virus: current perspectives. Virus Adapt Treat 2017:13–26CrossRefGoogle Scholar
  3. 3.
    Polat M, Takeshima S, Aida Y (2017) Epidemiology and genetic diversity of bovine leukemia virus. Virol J 14:209CrossRefGoogle Scholar
  4. 4.
    EFSA Panel on Animal Health and Welfare (AHAW) (2015) Enzootic bovine leukosis. EFSA J 13:4188Google Scholar
  5. 5.
    Bauermann FV, Ridpath JF, Dargatz DA (2017) Bovine leukemia virus seroprevalence among cattle presented for slaughter in the United States. J Vet Diagn Investig 29:704–706CrossRefGoogle Scholar
  6. 6.
    Bartlett PC, Sordillo LM, Byrem TM, Norby B, Grooms DL, Swenson CL, Zalucha J, Erskine EJ (2014) Options for the control of bovine leukemia virus in dairy cattle. J Am Vet Med Assoc 244:914–922CrossRefGoogle Scholar
  7. 7.
    Matsumura K, Inoue E, Osawa Y, Okazaki K (2011) Molecular epidemiology of bovine leukemia virus associated with enzootic bovine leukosis in Japan. Virus Res 155:343–348CrossRefGoogle Scholar
  8. 8.
    Polat M, Takeshima SN, Hosomichi K, Kim J, Miyasaka T, Yamada K, Arainga M, Murakami T, Matsumoto Y, de la Barra DV, Panei CJ, Gonzalez ET, Kanemaki M, Onuma M, Giovambattista G, Aida Y (2016) A new genotype of bovine leukemia virus in South America identified by NGS-based whole genome sequencing and molecular evolutionary genetic analysis. Retrovirology 13:4CrossRefGoogle Scholar
  9. 9.
    Polat M, Moe HH, Shimogiri T, Moe KK, Takeshima S, Aida Y (2017) The molecular epidemiological study of bovine leukemia virus infection in Myanmar cattle. Arch Virol 162:425–437CrossRefGoogle Scholar
  10. 10.
    Pandey GS, Simulundu E, Mwiinga D, Samui KL, Mweene AS, Kajihara M, Mangani A, Mwenda R, Ndebe J, Konnai S, Takada A (2017) Clinical and subclinical bovine leukemia virus infection in a dairy cattle herd in Zambia. Arch Virol 162:1051–1056CrossRefGoogle Scholar
  11. 11.
    Walrand F, Fumoux F, Roelants G, Parodi AL, Levy D (1986) Incidence of bovine leukemia virus specific antibodies in West African cattle. Int J Cancer 37:619–621CrossRefGoogle Scholar
  12. 12.
    Mushi EZ, Wibberley G, Kupe DC (1990) Antibodies to bovine leukemia virus in Botswana. Trop Anim Health Prod 22:126CrossRefGoogle Scholar
  13. 13.
    Kaura HT, Hübschle OJ (1994) The occurrence of enzootic bovine leukosis (EBL) in Namibia—an epidemiological study. Deutsche Tierarztliche Wochenschrift 101:66–67Google Scholar
  14. 14.
    Heinonen M, Assefa W (1995) Some observations on bovine leukosis virus antibodies in Ethiopia. Trop Anim Health Prod 27:225–226CrossRefGoogle Scholar
  15. 15.
    Schoepf KC, Kapaga AM, Msami HM, Hyera JM (1997) Serological evidence of the occurrence of enzootic bovine leukosis (EBL) virus infection in cattle in Tanzania. Trop Anim Health Prod 29:15–19CrossRefGoogle Scholar
  16. 16.
    Meas S, Nakayama M, Usui T, Nakazato Y, Yasuda J, Ohashi K, Onuma M (2004) Evidence for bovine immunodeficiency virus infection in cattle in Zambia. Jpn J Vet Res 52:3–8Google Scholar
  17. 17.
    Ndou RV, Sejesho F, Dzoma BM, Motsei LE, Nyirenda M, Bakunzi FR (2011) A serosurvey of the prevalence of enzootic bovine leukosis in the Mafikeng area of the North West Province of South Africa. J Hum Ecol 36:53–55CrossRefGoogle Scholar
  18. 18.
    Zaghawa A, Beier D, Abd El-Rahim IH, Karim I, El-ballal S, Conraths FJ, Marquardt O (2002) An outbreak of enzootic bovine leukosis in upper Egypt: clinical, laboratory and molecular-epidemiological studies. J Vet Med B Infect Dis Vet Public Health 49:123–129CrossRefGoogle Scholar
  19. 19.
    Fechner H, Blankenstein P, Looman AC, Elwert J, Geue L, Albrecht C, Kurg A, Beier D, Marquardt O, Ebner D (1997) Provirus variants of the bovine leukemia virus and their relation to the serological status of naturally infected cattle. Virology 237:261–269CrossRefGoogle Scholar
  20. 20.
    Cowling DW, Gardner IA, Johnson WO (1999) Comparison of methods for estimation of individual-level prevalence based on pooled samples. Prev Vet Med 39:211–225CrossRefGoogle Scholar
  21. 21.
    Simulundu E, Chambaro HM, Sinkala Y, Kajihara M, Ogawa H, Mori A, Ndebe J, Dautu G, Mataa L, Lubaba CH, Simuntala C, Fandamu P, Simuunza M, Pandey GS, Samui KL, Misinzo G, Takada A, Mweene AS (2018) Co-circulation of multiple genotypes of African swine fever viruses among domestic pigs in Zambia (2013–2015). Transbound Emerg Dis 65:114–122CrossRefGoogle Scholar
  22. 22.
    Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120CrossRefGoogle Scholar
  23. 23.
    Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis (MEGA) software version 6.0. Mol Biol Evol 30:2725–2729CrossRefGoogle Scholar
  24. 24.
    Hall TA (1999) BioEdit: a user friendly biological sequences alignment editor and analysis program for Window 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  25. 25.
    Murakami H, Uchiyama J, Suzuki C, Nikaido S, Sato RS, Maeda Y, Tomioka M, TakeshimaS Kato H, Sakaguchi M, Sentsui H, Aida Y, Tsukamoto K (2018) Variations in the viral genome and biological properties of bovine leukemia virus wild-type strains. Virus Res 253:103–111CrossRefGoogle Scholar
  26. 26.
    Lee E, Kim EJ, Ratthanophart J, Vitoonpong R, Kim BH, Cho IS, Song JY, Lee KK, Shin YK (2016) Molecular epidemiological and serological studies of bovine leukemia virus in cattle in Thailand. Infect Genet Evol 41:245–254CrossRefGoogle Scholar
  27. 27.
    Mumba C, Häsler B, Muma JB, Munyeme M, Chilolo SD, Skjerve E, Rich MK (2018) Practices of traditional beef farmers in their production and marketing of cattle in Zambia. Trop Anim Health Prod 50:49–62CrossRefGoogle Scholar
  28. 28.
    Moratorio G, Obal G, Dubra A, Correa A, Bianchi S, Buschiazzo A, Cristina J, Pritsch O (2010) Phylogenetic analysis of bovine leukemia viruses isolated in South America reveals diversification in seven distinct genotypes. Arch Virol 155:481–489CrossRefGoogle Scholar
  29. 29.
    Ababneh MM, Al-Rukibat RK, Hananeh WM, Nasar AT, Al-Zghoul MB (2012) Detection and molecular characterization of bovine leukemia viruses from Jordan. Arch Virol 157:2343–2348CrossRefGoogle Scholar
  30. 30.
    Yang Y, Kelly PJ, Bai J, Zhang R, Wang C (2016) First molecular characterization of bovine leukemia virus infections in the Caribbean. PLoS One 11:e0168379CrossRefGoogle Scholar
  31. 31.
    Benavides B, Munoz S, Ceriani C (2017) Molecular analysis of a fragment of bovine leukemia virus env gene by nested-PCR in dairy cows from Pasto, Nariño. Rev Med Vet 33:67–75Google Scholar
  32. 32.
    Pluta A, Rola-Łuszczak M, Kubiś P, Balov S, Moskalik R, Choudhury B, Kuźmak J (2017) Molecular characterization of bovine leukemia virus from Moldovan dairy cattle. Arch Virol 162:1563–1576CrossRefGoogle Scholar
  33. 33.
    Dube S, Dolcini G, Abbott L, Mehta S, Dube D, Gutierrez S, Ceriani C, Esteban E, Ferrer J, Poiesz B (2000) The complete genomic sequence of a BLV strain from a Holstein cow from Argentina. Virology 277:379–386CrossRefGoogle Scholar
  34. 34.
    Gatot JS, Callebaut I, Van Lint C, Demonté D, Kerkhofs P, Portetelle D, Burny A, Willems L, Kettmann R (2002) Bovine leukemia virus SU protein interacts with zinc, and mutations within two interacting regions differently affect viral fusion and infectivity in vivo. J Virol 76:7956–7967CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • Mundia M. Phiri
    • 1
  • Evans Kaimoyo
    • 1
  • Katendi Changula
    • 2
  • Isaac Silwamba
    • 2
  • Herman M. Chambaro
    • 3
  • Penjaninge Kapila
    • 2
  • Masahiro Kajihara
    • 3
  • Martin Simuunza
    • 2
    • 4
  • John Bwalya Muma
    • 2
  • Girja S. Pandey
    • 2
  • Ayato Takada
    • 2
    • 3
  • Aaron S. Mweene
    • 2
    • 4
  • Simbarashe Chitanga
    • 5
  • Edgar Simulundu
    • 2
    Email author
  1. 1.School of Natural SciencesThe University of ZambiaLusakaZambia
  2. 2.Department of Disease Control, School of Veterinary MedicineThe University of ZambiaLusakaZambia
  3. 3.Division of Global EpidemiologyHokkaido University Research Center for Zoonosis ControlSapporoJapan
  4. 4.Africa Center of Excellence of Infectious Diseases of Humans and AnimalsUniversity of ZambiaLusakaZambia
  5. 5.School of Health SciencesThe University of ZambiaLusakaZambia

Personalised recommendations