Advertisement

Archives of Virology

, Volume 164, Issue 10, pp 2599–2603 | Cite as

Complete genome analysis of the novel Enterococcus faecalis phage vB_EfaS_AL3

  • Yuyu Yuan
  • Feiyang Zhao
  • Lili Wang
  • Demeng Tan
  • Cong Cong
  • Xiaoyu Li
  • Yongping XuEmail author
Annotated Sequence Record

Abstract

This work describes the characterization and genome annotation of a new lytic Enterococcus faecalis siphovirus, vB_EfaS_AL3 (referred to as AL3), isolated from wastewater samples collected in Liaoning Province, China. The genome of phage AL3 is composed of linear double-stranded DNA that is 40,789 bp in length with a G + C content of 34.84% and 61 putative protein-coding genes. Phylogenetic and comparative genomic analyses indicate that phage AL3 should be considered a novel phage.

Notes

Acknowledgements

The authors thank members of Professor Yigang Tong’s group at the Beijing Institute of Microbiology and Epidemiology for help with sequence analysis.

Funding

This work was financially supported by the National Public Science and Technology Research Funds Projects of Ocean (Grant no. 201405003).

Compliance with ethical standards

Conflict of interest

There are no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals by any of the authors.

Supplementary material

705_2019_4341_MOESM1_ESM.docx (25 kb)
Supplementary material 1 (DOCX 25 kb)

References

  1. 1.
    Arias CA, Murray BE (2012) The rise of the Enterococcus: beyond vancomycin resistance. Nat Rev Microbiol 10:266–278CrossRefGoogle Scholar
  2. 2.
    Bebeacua C, Lorenzo Fajardo JC, Blangy S, Spinelli S, Bollmann S, Neve H, Cambillau C, Heller KJ (2013) X-ray structure of a superinfection exclusion lipoprotein from phage TP-J34 and identification of the tape measure protein as its target. Mol Microbiol 89:152–165CrossRefGoogle Scholar
  3. 3.
    Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120CrossRefGoogle Scholar
  4. 4.
    Cheng M, Zhang Y, Li X, Liang J, Hu L, Gong P, Zhang L, Cai R, Zhang H, Ge J, Ji Y, Guo Z, Feng X, Sun C, Yang Y, Lei L, Han W, Gu J (2017) Endolysin LysEF-P10 shows potential as an alternative treatment strategy for multidrug-resistant Enterococcus faecalis infections. Sci Rep 7:10164CrossRefGoogle Scholar
  5. 5.
    Liang L, Zhao H, An B, Tang L (2018) High-resolution structure of podovirus tail adaptor suggests repositioning of an octad motif that mediates the sequential tail assembly. Proc Natl Acad Sci USA 115:313–318CrossRefGoogle Scholar
  6. 6.
    Livornese LL Jr, Dias S, Samel C, Romanowski B, Taylor S, May P, Pitsakis P, Woods G, Kaye D, Levison ME et al (1992) Hospital-acquired infection with vancomycin-resistant Enterococcus faecium transmitted by electronic thermometers. Ann Intern Med 117:112–116CrossRefGoogle Scholar
  7. 7.
    Pell LG, Kanelis V, Donaldson LW, Howell PL, Davidson AR (2009) The phage lambda major tail protein structure reveals a common evolution for long-tailed phages and the type VI bacterial secretion system. Proc Natl Acad Sci USA 106:4160–4165CrossRefGoogle Scholar
  8. 8.
    Penades JR, Chen J, Quiles-Puchalt N, Carpena N, Novick RP (2015) Bacteriophage-mediated spread of bacterial virulence genes. Curr Opin Microbiol 23:171–178CrossRefGoogle Scholar
  9. 9.
    Schattner P, Brooks AN, Lowe TM (2005) The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Res 33:W686–W689CrossRefGoogle Scholar
  10. 10.
    Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739CrossRefGoogle Scholar
  11. 11.
    Yuksel SA, Thompson KD, Ellis AE, Adams A (2001) Purification of Piscirickettsia salmonis and associated phage particles. Dis Aquat Organ 44:231–235CrossRefGoogle Scholar
  12. 12.
    Zhang W, Mi Z, Yin X, Fan H, An X, Zhang Z, Chen J, Tong Y (2013) Characterization of Enterococcus faecalis phage IME-EF1 and its endolysin. PLoS One 8:e80435CrossRefGoogle Scholar
  13. 13.
    Zhang X, Wang Y, Li S, An X, Pei G, Huang Y, Fan H, Mi Z, Zhang Z, Wang W, Chen Y, Tong Y (2015) A novel termini analysis theory using HTS data alone for the identification of Enterococcus phage EF4-like genome termini. BMC Genomics 16:414CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • Yuyu Yuan
    • 1
  • Feiyang Zhao
    • 4
  • Lili Wang
    • 1
    • 3
  • Demeng Tan
    • 2
  • Cong Cong
    • 1
  • Xiaoyu Li
    • 1
    • 3
  • Yongping Xu
    • 1
    • 3
    Email author
  1. 1.School of BioengineeringDalian University of TechnologyDalianChina
  2. 2.Dalian SEM Bio-Engineering Technology Co. Ltd.DalianChina
  3. 3.Ministry of Education Center for Food Safety of Animal OriginDalianChina
  4. 4.State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyBeijingChina

Personalised recommendations