Advertisement

Archives of Virology

, Volume 164, Issue 7, pp 1793–1803 | Cite as

Adjuvant activity of multimolecular complexes based on Glycyrrhiza glabra saponins, lipids, and influenza virus glycoproteins

  • P. G. AlexyukEmail author
  • A. P. Bogoyavlenskiy
  • M. S. Alexyuk
  • A. S. Turmagambetova
  • I. A. Zaitseva
  • E. S. Omirtaeva
  • V. E. Berezin
Original Article

Abstract

Numerous studies have shown that immunostimulatory complexes containing Quil-A saponin and various antigens are effective in stimulating the immune response and can be used as vaccine preparations for animals and humans. However, Quil-A saponin possesses toxicity and haemolytic activity. In the present work, a saponin-containing preparation named “Glabilox” was isolated from the roots of a Glycyrrhiza glabra L. plant by high-performance liquid chromatography (HPLC). The results showed that Glabilox has no toxicity or haemolytic activity and can form stable immunostimulatory complexes. Subcutaneous immunization of mice with an immunostimulating complex containing Glabilox and H7N1 influenza virus antigens stimulated high levels of humoral and cellular immunity. Vaccination of chickens with the same immunostimulating complex protected 100% of the animals after experimental infection with a homologous virus. Comparative studies showed that the immunogenic and protective activity of immunostimulatory complexes containing Quil-A and immunostimulatory complexes containing Glabilox are comparable to each other. The results of these studies indicated that Glycyrrhiza glabra saponins show great promise as safe and effective adjuvants.

Notes

Acknowledgements

This work was supported by the Ministry of Education and Science of the Republic of Kazakhstan (Grant numbers: BR05236330 and AP05130957).

Funding

This work was supported by the Ministry of Education and Science of the Republic of Kazakhstan (Grant numbers: BR05236330 and AP05130957).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Informed consent

Not applicable.

References

  1. 1.
    WHO (2018) World health statistics 2018: monitoring health for the SDGs, sustainable development goals. World Health Organization, GenevaGoogle Scholar
  2. 2.
    Lim SS et al (2012) A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380(9859):2224–2260.  https://doi.org/10.1016/S0140-6736(12)61766-8 CrossRefGoogle Scholar
  3. 3.
    Armstrong-Mensah EA, Ndiaye SM (2018) Global health security agenda implementation: a case for community engagement. Health Secur 16(4):217–223.  https://doi.org/10.1089/hs.2017.0097 CrossRefGoogle Scholar
  4. 4.
    Hoff NA, Doshi RH, Colwell B et al (2017) Evolution of a disease surveillance system: an increase in reporting of human monkeypox disease in the Democratic Republic of the Congo, 2001–2013. Int J Trop Dis Health.  https://doi.org/10.9734/ijtdh/2017/35885 Google Scholar
  5. 5.
    De Gregorio E, Rappuoli R (2012) Vaccines for the future: learning from human immunology. Microb Biotechnol 5:149–155.  https://doi.org/10.1111/j.1751-7915.2011.00276.x CrossRefGoogle Scholar
  6. 6.
    Delany I, Rappuoli R, De Gregorio E (2014) Vaccines for the 21st century. EMBO Mol Med 6:708–720.  https://doi.org/10.1002/emmm.201403876 Google Scholar
  7. 7.
    Wan Z, Cardenas Garcia S, Liu J et al (2018) An alternative strategy as a quadrivalent live attenuated influenza virus vaccine. J Virol.  https://doi.org/10.1128/jvi.01025-18 Google Scholar
  8. 8.
    Arvin AM, Greenberg HB (2006) New viral vaccines. Virology 344:240–249CrossRefGoogle Scholar
  9. 9.
    Wang S, Liu H, Zhang X, Qian F (2015) Intranasal and oral vaccination with protein-based antigens: advantages, challenges and formulation strategies. Protein Cell 6(7):480–503.  https://doi.org/10.1007/s13238-015-0164-2 CrossRefGoogle Scholar
  10. 10.
    Pollard AJ (2007) New combination vaccines still need a boost. Arch Dis Child 92:1–2CrossRefGoogle Scholar
  11. 11.
    Poland GA, Whitaker JA, Poland CM et al (2016) Vaccinology in the third millennium: scientific and social challenges. Curr Opin Virol 17:116–125.  https://doi.org/10.1016/j.coviro.2016.03.003 CrossRefGoogle Scholar
  12. 12.
    Saso A, Kampmann B (2017) Vaccine responses in newborns. Semin Immunopathol 39:627–642.  https://doi.org/10.1007/s00281-017-0654-9 CrossRefGoogle Scholar
  13. 13.
    Dreskin SC, Halsey NA, Kelso JM et al (2016) International Consensus (ICON): allergic reactions to vaccines. World Allergy Organ J 9:32.  https://doi.org/10.1186/s40413-016-0120-5 CrossRefGoogle Scholar
  14. 14.
    Azmi F, Ahmad Fuaad AA, Skwarczynski M, Toth I (2014) Recent progress in adjuvant discovery for peptide-based subunit vaccines. Hum Vaccin Immunother 10:778–796CrossRefGoogle Scholar
  15. 15.
    Mohan T, Verma P, Rao DN (2013) Novel adjuvants and delivery vehicles for vaccines development: a road ahead. Indian J Med Res 138:779–795Google Scholar
  16. 16.
    Rajput ZI, Hu S, Xiao C, Arijo AG (2007) Adjuvant effects of saponins on animal immune responses. J Zhejiang Univ Sci B 8:153–161.  https://doi.org/10.1631/jzus.2007.B0153 CrossRefGoogle Scholar
  17. 17.
    Marciani DJ (2018) Elucidating the mechanisms of action of saponin-derived adjuvants. Trends Pharmacol Sci 39:573–585.  https://doi.org/10.1016/j.tips.2018.03.005 CrossRefGoogle Scholar
  18. 18.
    Zhao YC, Xue CH, Zhang TT, Wang YM (2018) Saponins from sea cucumber and their biological activities. J Agric Food Chem 66:7222–7237.  https://doi.org/10.1021/acs.jafc.8b01770 CrossRefGoogle Scholar
  19. 19.
    Morein B, Hu KF, Abasugra I (2004) Current status and potential application of ISCOMs in veterinary medicine. Adv Drug Deliv Rev 56:1367–1382CrossRefGoogle Scholar
  20. 20.
    Mowat AM, Donachie AM, Reid G, Jarrett O (1991) Immune-stimulating complexes containing Quil A and protein antigen prime class I MHC-restricted T lymphocytes in vivo and are immunogenic by the oral route. Immunology 72:317–322Google Scholar
  21. 21.
    Sun HX, Xie Y, Ye YP (2009) ISCOMs and ISCOMATRIX. Vaccine 27:4388–4401.  https://doi.org/10.1016/j.vaccine.2009.05.032 CrossRefGoogle Scholar
  22. 22.
    White K, RadesT Kearns P, Toth I, Hook S (2006) Immunogenicity of liposomes containing lipid core peptides and the adjuvant Quil A. Pharm Res 23:1473–1481CrossRefGoogle Scholar
  23. 23.
    Zhu D, Tuo W (2016) QS-21: a potent vaccine adjuvant. Nat Prod Chem Res 3(4):e113.  https://doi.org/10.4172/2329-6836.1000e113 Google Scholar
  24. 24.
    Brügmann M, Drommer W, Reichl U, Boge A (1997) ISCOM (Immuno Stimulating Complex)-vaccine of equine influenza virus–transmission electron microscopic investigation and literature review. DTW 104(6):196–202Google Scholar
  25. 25.
    Sjölander A, Cox JC, Barr IG (1999) ISCOMs: an adjuvant with multiple functions. J Leukoc Biol 64:713–723CrossRefGoogle Scholar
  26. 26.
    Chung KY, Coyle EM, Jani D et al (2015) ISCOMATRIX™ adjuvant promotes epitope spreading and antibody affinity maturation of influenza A H7N9 virus like particle vaccine that correlate with virus neutralization in humans. Vaccine 33:3953–3962CrossRefGoogle Scholar
  27. 27.
    Hägglund S, Hu K, Blodörn K et al (2014) Characterization of an experimental vaccine for bovine respiratory syncytial virus. Clin Vaccine Immunol 21:997–1004CrossRefGoogle Scholar
  28. 28.
    Fossum C, Hjertner B, Ahlberg V et al (2014) Early inflammatory response to the saponin adjuvant Matrix-M in the pig. Vet Immunol Immunopathol 158:53–61CrossRefGoogle Scholar
  29. 29.
    Magnusson SE, Karlsson KH, Reimer JM et al (2014) Matrix-M™ adjuvanted envelope protein vaccine protects against lethal lineage 1 and 2 West Nile virus infection in mice. Vaccine 32:800–808CrossRefGoogle Scholar
  30. 30.
    (2007) New smallpox vaccine approved by US FDA. Expert Rev Vaccines 6(5):654–655.  https://doi.org/10.1586/14760584.6.5.653
  31. 31.
    Berezin VE, Zaides VM, Isaeva ES, Artamonov AF, Zhdanov VM (1988) Controlled organization of multimolecular complexes of enveloped virus glycoproteins: study of immunogenicity. Vaccine 6:450–456CrossRefGoogle Scholar
  32. 32.
    Klimov A, Balish A, Veguilla V et al (2012) Influenza virus titration, antigenic characterization, and serological methods for antibody detection. Methods Mol Biol 865:25–51.  https://doi.org/10.1007/978-1-61779-621-0_3 CrossRefGoogle Scholar
  33. 33.
    Carlsson N, Borde A, Wölfel S, Åkerman B, Larsson A (2011) Quantification of protein concentration by the Bradford method in the presence of pharmaceutical polymers. Anal Biochem 411:116–121CrossRefGoogle Scholar
  34. 34.
    Fontan Candela JL (1958) Methodes analytiques de différenciation des saponines. Bulletin de la Société de chimie biologique 40:503–510Google Scholar
  35. 35.
    Bomford R (1980) Saponin and other haemolysins (vitamin A, aliphatic amines, polyene antibiotics) as adjuvants for SRBC in the mouse. Evidence for a role for cholesterol-binding in saponin adjuvanticity. Int Arch Allergy Appl Immunol 63(2):170–177CrossRefGoogle Scholar
  36. 36.
    Ozel M, Hoglund S, Gelderblom H, Morein B (1989) Quaternary structure of the immunostimulating complex (ISCOM). J Ultrastruct Mol Struct Res 102:240–248CrossRefGoogle Scholar
  37. 37.
    Natarajan S, Remick DG (2013) ELISA rescue protocol: recovery of sample concentrations from an assay with an unsuccessful standard curve. Methods 61:69–72CrossRefGoogle Scholar
  38. 38.
    Verschoor CP, Singh P, Russell ML et al (2016) Correction: microneutralization assay titres correlate with protection against seasonal influenza H1N1 and H3N2 in children. PLoS One 11(9):e0163830CrossRefGoogle Scholar
  39. 39.
    Allison AC (1998) The mode of action of immunological adjuvants. Dev Biol Stand 92:3–11Google Scholar
  40. 40.
    Aucouturier J, Ganne V, Laval A (2000) Efficacy and safety of new adjuvants. Ann N Y Acad Sci 916:600–604CrossRefGoogle Scholar
  41. 41.
    Lee S, Nguyen MT (2015) Recent advances of vaccine adjuvants for infectious diseases. Immune Netw 15:51–57.  https://doi.org/10.4110/in.2015.15.2.51 CrossRefGoogle Scholar
  42. 42.
    Di Pasquale A, Preiss S, Da Silva FT, Garçon N (2015) Vaccine adjuvants: from 1920 to 2015 and beyond. Vaccines (Basel) 3:320–343.  https://doi.org/10.3390/vaccines3020320 CrossRefGoogle Scholar
  43. 43.
    Hu KF, Regner M, Siegrist CA et al (2005) The immunomodulating properties of human respiratory syncytial virus and immunostimulating complexes containing Quillaja saponin components QH-A, QH-C and ISCOPREP703. FEMS Immunol Med Microbiol 43:269–276CrossRefGoogle Scholar
  44. 44.
    Kitagawa I (2002) Licorice root. A natural sweetener and an important ingredient in Chinese medicine. Pure Appl Chem 74:1189–1198CrossRefGoogle Scholar
  45. 45.
    Schmid C, Dawid C, Peters V, Hofmann T (2018) Saponins from European Licorice Roots (Glycyrrhiza glabra). J Nat Prod 81:1734–1744.  https://doi.org/10.1021/acs.jnatprod.8b00022 CrossRefGoogle Scholar
  46. 46.
    Zhang Q, Ye M (2009) Chemical analysis of the Chinese herbal medicine Gan-Cao (licorice). J Chromatogr A 1216:1954–1969.  https://doi.org/10.1016/j.chroma.2008.07.072 CrossRefGoogle Scholar
  47. 47.
    Sun HX, Xie Y, Ye YP (2009) Advances in saponin-based adjuvants. Vaccine 27:1787–1796.  https://doi.org/10.1016/j.vaccine.2009.01.091 CrossRefGoogle Scholar
  48. 48.
    Silveira F, Cibulski SP, Varela AP et al (2011) Quillaja brasiliensis saponins are less toxic than Quil A and have similar properties when used as an adjuvant for a viral antigen preparation. Vaccine 29:9177–9182.  https://doi.org/10.1016/j.vaccine.2011.09.1 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Research and Production Center for Microbiology and VirologyAlmatyKazakhstan

Personalised recommendations