Cell-line-dependent crystal morphology and sublocalization of the Thyrinteina arnobia cypovirus polyhedrin expressed from a recombinant baculovirus

  • Leonardo A. Silva
  • Daniel M. P. Ardisson-AraújoEmail author
  • Fabricio S. Morgado
  • André B. Horta
  • Manoel Victor Franco Lemos
  • Carlos F. Wilcken
  • Bergmann M. Ribeiro
Brief Report


We describe an unexpected feature observed for the heterologous expression of the Thyrinteina arnobia cypovirus polyhedrin from a recombinant baculovirus infection in different insect cell lines. The in cellulo-formed crystals varied in size and shape depending on the cell line. Crystals formed in Trichoplusia ni-derived cells were cubic (0.1-2 μm) and localized in both the nucleus and cytoplasm, whereas those formed in Spodoptera frugiperda-derived cells were ovate and ellipsoidal (0.1-3 μm) and also localized in both the nucleus and cytoplasm. The molecular basis for differences in the morphology, size, and location of cypovirus occlusion bodies is unclear, and cellular proteins might play a role in their formation and location.


Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Funding statement

This work was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, grant number 407908/2013-7) and Fundação de Apoio à Pesquisa do Distrito Federal (FAPDF, grant number 193.001532/2016).

Supplementary material

705_2019_4214_MOESM1_ESM.tif (3.5 mb)
Fig. S1 (A) Transmission electron micrograph of Trichoplusia ni-derived cells (Tn5B) cells infected with the TharCPV-polh-expressing baculovirus, showing crystal formation in the cell nucleus (Nu) at 48 h postinfection. (B) Transmission electron micrograph of Spodoptera frugiperda-dervided cells (Sf21) cells infected with the TharCPV-polh-expressing baculovirus, showing crystals in both the cell cytoplasm (Cyto) and nucleus (Nu) at 48 h postinfection. The crystals are indicated by black arrowheads. (C) Immunofluorescence and bright-field micrographs of Trichoplusia ni-derived cells (Tn5B) cells infected with the TharCPV-polh-expressing baculovirus, showing crystal formation mainly in the cell nucleus at 48 h postinfection. (D) Immunofluorescence and bright-field micrographs of Spodoptera frugiperda-derived cells (Sf21 cells) infected with the TharCPV-polh-expressing baculovirus, showing crystals mostly in the cytoplasm at 48 h postinfection. Green color shows the location of ThaCPV-polyhedrin identified using an anti-his antibody and a secondary antibody conjugated with AlexaFluor 488 (TIFF 3566 kb)


  1. 1.
    Axford D, Ji X, Stuart DI, Sutton G (2014) In cellulo structure determination of a novel cypovirus polyhedrin. Acta Crystallogr D Biol Crystallogr 70:1435–1441. CrossRefGoogle Scholar
  2. 2.
    Coulibaly F, Chiu E, Gutmann S, Rajendran C, Haebel PW, Ikeda K, Mori H, Ward VK, Schulze-Briese C, Metcalf P (2009) The atomic structure of baculovirus polyhedra reveals the independent emergence of infectious crystals in DNA and RNA viruses. Proc Natl Acad Sci USA 106:22205–22210. CrossRefGoogle Scholar
  3. 3.
    Coulibaly F, Chiu E, Ikeda K, Gutmann S, Haebel PW, Schulze-Briese C, Mori H, Metcalf P (2007) The molecular organization of cypovirus polyhedra. Nature 446:97–101. CrossRefGoogle Scholar
  4. 4.
    Echeverry F, Bergeron J, Kaupp W, Guertin C, Arella M (1997) Sequence analysis and expression of the polyhedrin gene of Choristoneura fumiferana cytoplasmic polyhedrosis virus (CfCPV). Gene 198(1–2):399–406. CrossRefGoogle Scholar
  5. 5.
    Ginn HM, Messerschmidt M, Ji X, Zhang H, Axford D, Gildea RJ, Winter G, Brewster AS, Hattne J, Wagner A, Grimes JM, Evans G, Sauter NK, Sutton G, Stuart DI (2015) Structure of CPV17 polyhedrin determined by the improved analysis of serial femtosecond crystallographic data. Nat Commun 6:6435. CrossRefGoogle Scholar
  6. 6.
    Granados RR, Guoxun L, Derksen ACG, McKenna KA (1994) A new insect cell line from Trichoplusia ni (BTI-Tn-5B1-4) susceptible to Trichoplusia ni single enveloped nuclear polyhedrosis virus. J Invertebr Pathol 64:260–266. CrossRefGoogle Scholar
  7. 7.
    Horta AB, Ardisson-Araujo DMP, da Silva LA, de Melo FL, da Silva Morgado F, Franco Lemos MV, Ribeiro ZA, Boiça AL, Wilcken CF, Ribeiro BM (2018) Genomic analysis of a cypovirus isolated from the eucalyptus brown looper, Thyrinteina arnobia (Stoll, 1782) (Lepidoptera: Geometridae). Virus Res 253:62–67. CrossRefGoogle Scholar
  8. 8.
    Ikeda K, Nakazawa H, Alain R, Belloncik S, Mori H (1998) Characterizations of natural and induced polyhedrin gene mutants of Bombyx mori cytoplasmic polyhedrosis viruses. Arch Virol 143(2):241–248. CrossRefGoogle Scholar
  9. 9.
    Ji X, Axford D, Owen R, Evans G, Ginn HM, Sutton G, Stuart DI (2015) Polyhedra structures and the evolution of the insect viruses. J Struct Biol 192:88–99. CrossRefGoogle Scholar
  10. 10.
    Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30(4):772–780. CrossRefGoogle Scholar
  11. 11.
    Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685. CrossRefGoogle Scholar
  12. 12.
    Mitsuhashi W, Kawakita H, Murakami R, Takemoto Y, Saiki T, Miyamoto K, Wada S (2007) Spindles of an entomopoxvirus facilitate its infection of the host insect by disrupting the peritrophic membrane. J Virol 81:4235–4243. CrossRefGoogle Scholar
  13. 13.
    Mori H, Ito R, Nakazawa H, Sumida M, Matsubara F, Minobe Y (1993) Expression of Bombyx mori cytoplasmic polyhedrosis virus polyhedrin in insect cells by using a baculovirus expression vector, and its assembly into polyhedra. J Gen Virol 74(1):99–102. CrossRefGoogle Scholar
  14. 14.
    O’Reilly DR, Miller LK, Luckow VA (1992) Baculovirus expression vector: a laboratory manual. WH Freeman and Company, New YorkGoogle Scholar
  15. 15.
    Rao CJ (1973) Surface topography and shapes of polyhedral inclusion bodies of the cytoplasmic polyhedrosis virus. J Ultrastruct Res 42(5–6):582–593. CrossRefGoogle Scholar
  16. 16.
    Rohrmann G, By E (2013) Baculovirus molecular biology: introduction to the baculoviruses, their taxonomy, and evolution. National Center for Biotechnology Information, BethesdaGoogle Scholar
  17. 17.
    Schönherr R, Rudolph JM, Redecke L (2018) Protein crystallization in living cells. Biol Chem 399(7):751–772. CrossRefGoogle Scholar
  18. 18.
    Vaughn JL, Goodwin RH, Tompkins GJ, McCawley P (1977) The establishment of two cell lines from the insect Spodoptera frugiperda (Lepidoptera; Noctuidae). In Vitro 13:213–217. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • Leonardo A. Silva
    • 1
  • Daniel M. P. Ardisson-Araújo
    • 2
    Email author
  • Fabricio S. Morgado
    • 1
  • André B. Horta
    • 3
  • Manoel Victor Franco Lemos
    • 4
  • Carlos F. Wilcken
    • 3
  • Bergmann M. Ribeiro
    • 1
  1. 1.Cell Biology DepartmentUnB-University of BrasíliaBrasíliaBrazil
  2. 2.Laboratory of Insect Virology, Department of Biochemistry and Molecular BiologyFederal University of Santa MariaSanta MariaBrazil
  3. 3.Plant Protection DepartmentFCA/UNESP, São Paulo State UniversityBotucatuBrazil
  4. 4.Applied Biology DepartmentFCAV/UNESP, São Paulo State UniversityJaboticabalBrazil

Personalised recommendations