Advertisement

Archives of Virology

, Volume 164, Issue 5, pp 1493–1497 | Cite as

Characterization of myophage AM24 infecting Acinetobacter baumannii of the K9 capsular type

  • Anastasia V. PopovaEmail author
  • Mikhail M. Shneider
  • Vera P. Myakinina
  • Vasily A. Bannov
  • Mikhail V. Edelstein
  • Evgenii O. Rubalskii
  • Andrey V. Aleshkin
  • Nadezhda K. Fursova
  • Nikolay V. Volozhantsev
Annotated Sequence Record

Abstract

In the present study, we investigate the biological properties and genomic organization of virulent bacteriophage AM24, which specifically infects multidrug-resistant clinical Acinetobacter baumannii strains with a K9 capsular polysaccharide structure. The phage was identified as a member of the family Myoviridae by transmission electron microscopy. The AM24 linear double-stranded DNA genome of 97,177 bp contains 167 open reading frames. Putative functions were assigned for products of 40 predicted genes, including proteins involved in nucleotide metabolism and DNA replication, packaging of DNA into the capsid, phage assembly and structural proteins, and bacterial cell lysis. The gene encoding the tailspike, which possesses depolymerase activity towards the corresponding capsular polysaccharides, is situated in the phage genome outside of the structural module, upstream of the genes responsible for packaging of DNA into the capsid. The data on characterization of depolymerase-carrying phage AM24 contributes to our knowledge of the diversity of viruses infecting different capsular types of A. baumannii.

Notes

Acknowledgements

The authors would like to thank Dr. Evgeny Zhilenkov (MicroWorld Ltd., Moscow, Russia) for assistance with TEM, Dr. Daria Lavysh (Heidelberg University, Heidelberg, Germany) for the participating in bioinformatic analysis, Dr. Yuriy Knirel’s group (N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia) for determination of the A. baumannii B05 CPS structure, and Dr. Olga Ershova (N. N. Burdenko Research Institute for Neurosurgery, Moscow, Russia) for the providing of clinical materials and A. baumannii strains.

Funding

The isolation of phage AM24 and determination of its infection parameters were supported by the Sectoral Scientific Program of the Russian Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing. Genomic analysis and phage host range determination were supported by the Russian Science Foundation (grant 18-15-00403).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain studies with human participants or animals performed by any of the authors.

Supplementary material

705_2019_4208_MOESM1_ESM.doc (259 kb)
Supplementary material 1 (DOC 259 kb)

References

  1. 1.
    Doi Y, Murray GL, Peleg AY (2015) Acinetobacter baumannii: evolution of antimicrobial resistance-treatment options. Semin Respir Crit Care Med 36(1):85–98.  https://doi.org/10.1055/s-0034-1398388 CrossRefGoogle Scholar
  2. 2.
    Towner KJ (2009) Acinetobacter: an old friend, but a new enemy. J Hosp Infect 73(4):355–363.  https://doi.org/10.1016/j.jhin.2009.03.032 CrossRefGoogle Scholar
  3. 3.
    Zarrilli R, Pournaras S, Giannouli M, Tsakris A (2013) Global evolution of multidrug-resistant Acinetobacter baumannii clonal lineages. Int J Antimicrob Agents 41(1):11–19.  https://doi.org/10.1016/j.ijantimicag.2012.09.008 CrossRefGoogle Scholar
  4. 4.
    Kenyon JJ, Hall RM (2013) Variation in the Complex Carbohydrate Biosynthesis Loci of Acinetobacter baumannii Genomes. PLoS One 8(4):e62160.  https://doi.org/10.1371/journal.pone.0062160 CrossRefGoogle Scholar
  5. 5.
    Popova AV, Lavysh DG, Klimuk EI et al (2017) Novel Fri1-like Viruses Infecting Acinetobacter baumannii—vB_AbaP_AS11 and vB_AbaP_AS12-characterization, comparative genomic analysis, and host-recognition strategy. Viruses. 9(7):188.  https://doi.org/10.3390/v9070188 CrossRefGoogle Scholar
  6. 6.
    Adams MD (1959) Bacteriophages. Interscience Publishers Inc., New York (OCLC 326505) Google Scholar
  7. 7.
    Bartual SG, Seifert H, Hippler C et al (2005) Development of a multilocus sequence typing scheme for characterization of clinical isolates of Acinetobacter baumannii. J Clin Microbiol 43:4382–4390.  https://doi.org/10.1128/JCM.43.9.4382-4390.2005 CrossRefGoogle Scholar
  8. 8.
    Diancourt L, Passet V, Nemec A et al (2010) The population structure of Acinetobacter baumannii: Expanding multiresistant clones from an ancestral susceptible genetic pool. PLoS One 5(4):e10034.  https://doi.org/10.1371/journal.pone.0010034 CrossRefGoogle Scholar
  9. 9.
    Oliveira H, Costa AR, Konstantinides N et al (2017) Ability of phages to infect Acinetobacter calcoaceticus-Acinetobacter baumannii complex species through acquisition of different pectate lyase depolymerase domains. Environ Microbiol 19(12):5060–5077.  https://doi.org/10.1111/1462-2920.13970 CrossRefGoogle Scholar
  10. 10.
    Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Laboratory Press, Cold Spring Harbor (ISBN: 0-87969-309-6) Google Scholar
  11. 11.
    Aziz RK, Bartels D, Best AA et al (2008) The RAST Server: rapid annotations using subsystems technology. BMC Genom 9:75.  https://doi.org/10.1186/1471-2164-9-75 CrossRefGoogle Scholar
  12. 12.
    Laslett D, Canback B (2004) ARAGORN, a program for the detection of transfer RNA and transfer-messenger RNA genes in nucleotide sequences. Nucleic Acids Res 32(1):11–16.  https://doi.org/10.1093/nar/gkh152 CrossRefGoogle Scholar
  13. 13.
    Söding J, Biegert A, Lupas AN (2005) The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res 33:W244–W248.  https://doi.org/10.1093/nar/gki408 CrossRefGoogle Scholar
  14. 14.
    Novikova O, Topilina N, Belfort M (2014) Enigmatic distribution, evolution, and function of inteins. J Biol Chem 289(21):14490–14497.  https://doi.org/10.1074/jbc.R114.548255 CrossRefGoogle Scholar
  15. 15.
    Turner D, Ackermann HW, Kropinski AM et al (2017) Comparative analysis of 37 Acinetobacter bacteriophages. Viruses 10(1):5.  https://doi.org/10.3390/v10010005 CrossRefGoogle Scholar
  16. 16.
    Sievers F, Higgins DG (2014) Clustal Omega, accurate alignment of very large numbers of sequences. Methods Mol Biol. 1079:105–16.  https://doi.org/10.1007/978-1-62703-646-7_6 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • Anastasia V. Popova
    • 1
    • 2
    • 3
    Email author
  • Mikhail M. Shneider
    • 2
    • 4
  • Vera P. Myakinina
    • 3
  • Vasily A. Bannov
    • 3
  • Mikhail V. Edelstein
    • 2
  • Evgenii O. Rubalskii
    • 5
    • 6
    • 7
  • Andrey V. Aleshkin
    • 5
  • Nadezhda K. Fursova
    • 3
  • Nikolay V. Volozhantsev
    • 3
  1. 1.Moscow Institute of Physics and Technology (State University)Moscow RegionRussia
  2. 2.Institute of Antimicrobial ChemotherapySmolensk State Medical UniversitySmolenskRussia
  3. 3.State Research Center for Applied Microbiology and BiotechnologyMoscow RegionRussia
  4. 4.Shemyakin-Ovchinnikov Institute of Bioorganic ChemistryMoscowRussia
  5. 5.G. N. Gabrichevsky Research Institute for Epidemiology and MicrobiologyMoscowRussia
  6. 6.Astrakhan State Medical UniversityAstrakhanRussia
  7. 7.Hannover Medical SchoolHannoverGermany

Personalised recommendations