Archives of Virology

, Volume 164, Issue 5, pp 1323–1334 | Cite as

Porcine circovirus type 2 ORF5 protein induces endoplasmic reticulum stress and unfolded protein response in porcine alveolar macrophages

  • Yueling Ouyang
  • Lei Xu
  • Jiangman Lv
  • Yufeng Hou
  • Zhixin Fan
  • Panpan Xu
  • Yanfen Jiang
  • Mengmeng Wu
  • Ran Li
  • Yanming Zhang
  • Kangkang GuoEmail author
Original Article


Porcine circovirus type 2 (PCV2) is the essential infectious agent causing porcine circovirus-associated disease (PCVD) in pigs and one of the important viruses that severely jeopardize the swine husbandry industry. PCV2 elicits the unfolded protein response (UPR) via activation of the PERK pathway, and its capsid protein (Cap) has also been found to induce UPR with subsequent activation of apoptosis. The open reading frame 5 (ORF5) protein is a recently discovered non-structural protein, and its function in PCV2 pathogenesis remains unknown. The aim of this study was to determine whether the PCV2 ORF5 protein could induce endoplasmic reticulum stress (ERS) and UPR in porcine alveolar macrophages (PAMs). pEGFP-tagged ORF5 protein was transiently overexpressed in PAMs. Transmission electron microscopy (TEM) was employed to examine changes in ER morphology, and quantitative real-time PCR and western blotting analysis were used to measure UPR-related cell signaling alterations. We found that the ORF5 protein triggers swelling and degranulation of the ER and upregulates the expression of ERS markers. Further experiments demonstrated that the PCV2 ORF5 protein induces ERS and UPR via the PERK (RNA-activated protein kinase-like endoplasmic reticulum kinase), ATF6 (activating transcription factor 6) and IRE1 (inositol requiring enzyme 1) signaling pathways. Together with previous studies, we provide new information on the ERS-UPR induced by the PCV2 ORF5 protein.


Author contributions

YLOY, KKG, and YMZ designed the experiments. YLOY, LX, JML and YFH carried out the experiments, collected data, and wrote this manuscript. KKG and YMZ contributed to critical revision of the manuscript. ZXF, PPX, YFJ, RL and MMW contributed to acquisition of data and critical revision of the manuscript. KKG contributed to the study concept and design, obtaining funding, study supervision, and critical revision of the manuscript.


This work was supported by grants from the National Natural Science Foundation of China (Project No. 31672580).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. 1.
    Rose N, Opriessnig T, Grasland B, Jestin A (2012) Epidemiology and transmission of porcine circovirus type 2 (PCV2). Virus Res 164(1–2):78–89. CrossRefPubMedGoogle Scholar
  2. 2.
    Segales J, Kekarainen T, Cortey M (2013) The natural history of porcine circovirus type 2: from an inoffensive virus to a devastating swine disease? Vet Microbiol 165(1–2):13–20. CrossRefPubMedGoogle Scholar
  3. 3.
    Gillespie J, Opriessnig T, Meng XJ, Pelzer K, Buechner-Maxwell V (2009) Porcine circovirus type 2 and porcine circovirus-associated disease. J Vet Intern Med 23(6):1151–1163. CrossRefPubMedGoogle Scholar
  4. 4.
    Grau-Roma L, Fraile L, Segales J (2011) Recent advances in the epidemiology, diagnosis and control of diseases caused by porcine circovirus type 2. Vet J 187(1):23–32. CrossRefPubMedGoogle Scholar
  5. 5.
    Tomas A, Fernandes LT, Valero O, Segales J (2008) A meta-analysis on experimental infections with porcine circovirus type 2 (PCV2). Vet Microbiol 132(3–4):260–273. CrossRefPubMedGoogle Scholar
  6. 6.
    Hamel AL, Lin LL, Nayar GP (1998) Nucleotide sequence of porcine circovirus associated with postweaning multisystemic wasting syndrome in pigs. J Virol 72(6):5262–5267PubMedPubMedCentralGoogle Scholar
  7. 7.
    Guo LJ, Lu YH, Wei YW, Huang LP, Liu CM (2010) Porcine circovirus type 2 (PCV2): genetic variation and newly emerging genotypes in China. Virol J 7:273. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Lv QZ, Guo KK, Zhang YM (2014) Current understanding of genomic DNA of porcine circovirus type 2. Virus Genes 49(1):1–10. CrossRefPubMedGoogle Scholar
  9. 9.
    Li D, Wang J, Xu S, Cai S, Ao C, Fang L, Xiao S, Chen H, Jiang Y (2018) Identification and functional analysis of the novel ORF6 protein of porcine circovirus type 2 in vitro. Vet Res Commun 42(1):1–10. CrossRefPubMedGoogle Scholar
  10. 10.
    Cheung AK (2003) The essential and nonessential transcription units for viral protein synthesis and DNA replication of porcine circovirus type 2. Virology 313(2):452–459CrossRefGoogle Scholar
  11. 11.
    Mankertz A, Mueller B, Steinfeldt T, Schmitt C, Finsterbusch T (2003) New reporter gene-based replication assay reveals exchangeability of replication factors of porcine circovirus types 1 and 2. J Virol 77(18):9885–9893CrossRefGoogle Scholar
  12. 12.
    Fort M, Sibila M, Nofrarias M, Perez-Martin E, Olvera A, Mateu E, Segales J (2010) Porcine circovirus type 2 (PCV2) Cap and Rep proteins are involved in the development of cell-mediated immunity upon PCV2 infection. Vet Immunol Immunopathol 137(3–4):226–234. CrossRefPubMedGoogle Scholar
  13. 13.
    Nawagitgul P, Morozov I, Bolin SR, Harms PA, Sorden SD, Paul PS (2000) Open reading frame 2 of porcine circovirus type 2 encodes a major capsid protein. J Gen Virol 81(Pt 9):2281–2287. CrossRefPubMedGoogle Scholar
  14. 14.
    Liu J, Chen I, Kwang J (2005) Characterization of a previously unidentified viral protein in porcine circovirus type 2-infected cells and its role in virus-induced apoptosis. J Virol 79(13):8262–8274. CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    He J, Cao J, Zhou N, Jin Y, Wu J, Zhou J (2013) Identification and functional analysis of the novel ORF4 protein encoded by porcine circovirus type 2. J Virol 87(3):1420–1429. CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Lv Q, Guo K, Wang T, Zhang C, Zhang Y (2015) Porcine circovirus type 2 ORF4 protein binds heavy chain ferritin. J Biosci 40(3):477–485CrossRefGoogle Scholar
  17. 17.
    Lv Q, Guo K, Zhang G, Zhang Y (2016) The ORF4 protein of porcine circovirus type 2 antagonizes apoptosis by stabilizing the concentration of ferritin heavy chain through physical interaction. J Gen Virol 97(7):1636–1646. CrossRefPubMedGoogle Scholar
  18. 18.
    Kitamura M (2008) Endoplasmic reticulum stress and unfolded protein response in renal pathophysiology: Janus faces. Am J Physiol Renal Physiol 295(2):F323–F334. CrossRefPubMedGoogle Scholar
  19. 19.
    Hetz C (2012) The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol 13(2):89–102. CrossRefGoogle Scholar
  20. 20.
    Li S, Kong L, Yu X (2015) The expanding roles of endoplasmic reticulum stress in virus replication and pathogenesis. Crit Rev Microbiol 41(2):150–164. CrossRefPubMedGoogle Scholar
  21. 21.
    Hetz C, Chevet E, Oakes SA (2015) Proteostasis control by the unfolded protein response. Nat Cell Biol 17(7):829–838. CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Zhou YS, Gu YX, Qi BZ, Zhang YK, Li XL, Fang WH (2017) Porcine circovirus type 2 capsid protein induces unfolded protein response with subsequent activation of apoptosis. J Zhejiang Univ Sci B 18(4):316–323. CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Lv Q, Guo K, Xu H, Wang T, Zhang Y (2015) Identification of putative ORF5 protein of porcine circovirus type 2 and functional analysis of gfp-fused ORF5 protein. PLoS One 10(6):e0127859. CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Harding HP, Zhang Y, Bertolotti A, Zeng H, Ron D (2000) Perk is essential for translational regulation and cell survival during the unfolded protein response. Mol Cell 5(5):897–904CrossRefGoogle Scholar
  25. 25.
    Tsukumo Y, Tsukahara S, Furuno A, Iemura S, Natsume T, Tomida A (2014) TBL2 is a novel PERK-binding protein that modulates stress-signaling and cell survival during endoplasmic reticulum stress. PLoS One 9(11):e112761. CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Harding HP, Zhang Y, Zeng H, Novoa I, Lu PD, Calfon M, Sadri N, Yun C, Popko B, Paules R, Stojdl DF, Bell JC, Hettmann T, Leiden JM, Ron D (2003) An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell 11(3):619–633CrossRefGoogle Scholar
  27. 27.
    Novoa I, Zeng H, Harding HP, Ron D (2001) Feedback inhibition of the unfolded protein response by GADD34-mediated dephosphorylation of eIF2alpha. J Cell Biol 153(5):1011–1022CrossRefGoogle Scholar
  28. 28.
    Ron D (2002) Translational control in the endoplasmic reticulum stress response. J Clin Investig 110(10):1383–1388. CrossRefPubMedGoogle Scholar
  29. 29.
    Ye J, Rawson RB, Komuro R, Chen X, Dave UP, Prywes R, Brown MS, Goldstein JL (2000) ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs. Mol Cell 6(6):1355–1364CrossRefGoogle Scholar
  30. 30.
    Shen J, Chen X, Hendershot L, Prywes R (2002) ER stress regulation of ATF6 localization by dissociation of BiP/GRP78 binding and unmasking of Golgi localization signals. Dev Cell 3(1):99–111CrossRefGoogle Scholar
  31. 31.
    Shen J, Prywes R (2004) Dependence of site-2 protease cleavage of ATF6 on prior site-1 protease digestion is determined by the size of the luminal domain of ATF6. J Biol Chem 279(41):43046–43051. CrossRefPubMedGoogle Scholar
  32. 32.
    Yoshida H, Okada T, Haze K, Yanagi H, Yura T, Negishi M, Mori K (2000) ATF6 activated by proteolysis binds in the presence of NF-Y (CBF) directly to the cis-acting element responsible for the mammalian unfolded protein response. Mol Cell Biol 20(18):6755–6767CrossRefGoogle Scholar
  33. 33.
    Okada T, Yoshida H, Akazawa R, Negishi M, Mori K (2002) Distinct roles of activating transcription factor 6 (ATF6) and double-stranded RNA-activated protein kinase-like endoplasmic reticulum kinase (PERK) in transcription during the mammalian unfolded protein response. Biochem J 366(Pt 2):585–594. CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Yoshida H, Haze K, Yanagi H, Yura T, Mori K (1998) Identification of the cis-acting endoplasmic reticulum stress response element responsible for transcriptional induction of mammalian glucose-regulated proteins. Involvement of basic leucine zipper transcription factors. J Biol Chem 273(50):33741–33749CrossRefGoogle Scholar
  35. 35.
    Travers KJ, Patil CK, Wodicka L, Lockhart DJ, Weissman JS, Walter P (2000) Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell 101(3):249–258CrossRefGoogle Scholar
  36. 36.
    Friedlander R, Jarosch E, Urban J, Volkwein C, Sommer T (2000) A regulatory link between ER-associated protein degradation and the unfolded-protein response. Nat Cell Biol 2(7):379–384. CrossRefGoogle Scholar
  37. 37.
    Yoshida H, Matsui T, Hosokawa N, Kaufman RJ, Nagata K, Mori K (2003) A time-dependent phase shift in the mammalian unfolded protein response. Dev Cell 4(2):265–271CrossRefGoogle Scholar
  38. 38.
    Trujillo-Alonso V, Maruri-Avidal L, Arias CF, Lopez S (2011) Rotavirus infection induces the unfolded protein response of the cell and controls it through the nonstructural protein NSP3. J Virol 85(23):12594–12604. CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Hassan IH, Zhang MS, Powers LS, Shao JQ, Baltrusaitis J, Rutkowski DT, Legge K, Monick MM (2012) Influenza A viral replication is blocked by inhibition of the inositol-requiring enzyme 1 (IRE1) stress pathway. J Biol Chem 287(7):4679–4689. CrossRefPubMedGoogle Scholar
  40. 40.
    Zhou Y, Qi B, Gu Y, Xu F, Du H, Li X, Fang W (2016) Porcine circovirus 2 deploys PERK pathway and GRP78 for its enhanced replication in PK-15 cells. Viruses. CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Lee AS (2005) The ER chaperone and signaling regulator GRP78/BiP as a monitor of endoplasmic reticulum stress. Methods 35(4):373–381. CrossRefPubMedGoogle Scholar
  42. 42.
    Harding HP, Calfon M, Urano F, Novoa I, Ron D (2002) Transcriptional and translational control in the Mammalian unfolded protein response. Annu Rev Cell Dev Biol 18:575–599. CrossRefPubMedGoogle Scholar
  43. 43.
    Kobylewski SE, Henderson KA, Yamada KE, Eckhert CD (2017) Activation of the EIF2alpha/ATF4 and ATF6 pathways in DU-145 cells by boric acid at the concentration reported in men at the US mean boron intake. Biol Trace Element Res 176(2):278–293. CrossRefGoogle Scholar
  44. 44.
    Michalak M, Robert Parker JM, Opas M (2002) Ca2 + signaling and calcium binding chaperones of the endoplasmic reticulum. Cell Calcium 32(5–6):269–278CrossRefGoogle Scholar
  45. 45.
    Zhou J, Liu CY, Back SH, Clark RL, Peisach D, Xu Z, Kaufman RJ (2006) The crystal structure of human IRE1 luminal domain reveals a conserved dimerization interface required for activation of the unfolded protein response. Proc Natl Acad Sci USA 103(39):14343–14348. CrossRefPubMedGoogle Scholar
  46. 46.
    Yamamoto K, Sato T, Matsui T, Sato M, Okada T, Yoshida H, Harada A, Mori K (2007) Transcriptional induction of mammalian ER quality control proteins is mediated by single or combined action of ATF6alpha and XBP1. Dev Cell 13(3):365–376. CrossRefGoogle Scholar
  47. 47.
    Harding HP, Zhang Y, Ron D (1999) Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 397(6716):271–274. CrossRefGoogle Scholar
  48. 48.
    Vattem KM, Wek RC (2004) Reinitiation involving upstream ORFs regulates ATF4 mRNA translation in mammalian cells. Proc Natl Acad Sci USA 101(31):11269–11274. CrossRefPubMedGoogle Scholar
  49. 49.
    Zhang F, Moon A, Childs K, Goodbourn S, Dixon LK (2010) The African swine fever virus DP71L protein recruits the protein phosphatase 1 catalytic subunit to dephosphorylate eIF2alpha and inhibits CHOP induction but is dispensable for these activities during virus infection. J Virol 84(20):10681–10689. CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Cheng G, Feng Z, He B (2005) Herpes simplex virus 1 infection activates the endoplasmic reticulum resident kinase PERK and mediates eIF-2alpha dephosphorylation by the gamma(1)3.45 protein. J Virol 79(3):1379–1388. CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Wang Y, Shen J, Arenzana N, Tirasophon W, Kaufman RJ, Prywes R (2000) Activation of ATF6 and an ATF6 DNA binding site by the endoplasmic reticulum stress response. J Biol Chem 275(35):27013–27020. CrossRefPubMedGoogle Scholar
  52. 52.
    Li B, Gao B, Ye L, Han X, Wang W, Kong L, Fang X, Zeng Y, Zheng H, Li S, Wu Z, Ye L (2007) Hepatitis B virus X protein (HBx) activates ATF6 and IRE1-XBP1 pathways of unfolded protein response. Virus Res 124(1–2):44–49. CrossRefPubMedGoogle Scholar
  53. 53.
    Ambrose RL, Mackenzie JM (2013) ATF6 signaling is required for efficient West Nile virus replication by promoting cell survival and inhibition of innate immune responses. J Virol 87(4):2206–2214. CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Sriburi R, Bommiasamy H, Buldak GL, Robbins GR, Frank M, Jackowski S, Brewer JW (2007) Coordinate regulation of phospholipid biosynthesis and secretory pathway gene expression in XBP-1(S)-induced endoplasmic reticulum biogenesis. J Biol Chem 282(10):7024–7034. CrossRefPubMedGoogle Scholar
  55. 55.
    Bommiasamy H, Back SH, Fagone P, Lee K, Meshinchi S, Vink E, Sriburi R, Frank M, Jackowski S, Kaufman RJ, Brewer JW (2009) ATF6alpha induces XBP1-independent expansion of the endoplasmic reticulum. J Cell Sci 122(Pt 10):1626–1636. CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Acosta-Alvear D, Zhou Y, Blais A, Tsikitis M, Lents NH, Arias C, Lennon CJ, Kluger Y, Dynlacht BD (2007) XBP1 controls diverse cell type- and condition-specific transcriptional regulatory networks. Mol Cell 27(1):53–66. CrossRefPubMedGoogle Scholar
  57. 57.
    Lee AH, Iwakoshi NN, Glimcher LH (2003) XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. Mol Cell Biol 23(21):7448–7459CrossRefGoogle Scholar
  58. 58.
    Tardif KD, Mori K, Kaufman RJ, Siddiqui A (2004) Hepatitis C virus suppresses the IRE1-XBP1 pathway of the unfolded protein response. J Biol Chem 279(17):17158–17164. CrossRefPubMedGoogle Scholar
  59. 59.
    Perera N, Miller JL, Zitzmann N (2017) The role of the unfolded protein response in dengue virus pathogenesis. Cell Microbiol 19(5):5. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • Yueling Ouyang
    • 1
  • Lei Xu
    • 2
  • Jiangman Lv
    • 1
  • Yufeng Hou
    • 1
  • Zhixin Fan
    • 1
  • Panpan Xu
    • 1
  • Yanfen Jiang
    • 1
  • Mengmeng Wu
    • 1
  • Ran Li
    • 1
  • Yanming Zhang
    • 1
  • Kangkang Guo
    • 1
    Email author
  1. 1.College of Veterinary MedicineNorthwest A&F UniversityYanglingChina
  2. 2.College of Life SciencesNorthwest A&F UniversityYanglingChina

Personalised recommendations