Advertisement

Archives of Virology

, Volume 164, Issue 5, pp 1479–1483 | Cite as

Molecular characterization of a new botybirnavirus that infects Botrytis cinerea

  • Luis Cottet
  • Christiaan A. Potgieter
  • Miguel E. Castro
  • Antonio CastilloEmail author
Annotated Sequence Record
  • 65 Downloads

Abstract

Eight different double-stranded RNA (dsRNA) molecules were found in the wild-type fungal strain Botrytis cinerea CCg427. The electrophoretic profile displayed molecules with approximate sizes of 1, 1.3, 1.6, 1.8, 3.3, 4.1, 6.5, and 12 kbp. Sequences analysis of the molecules in the 6.5-kbp band revealed the presence of two different dsRNA molecules (dsRNA-1 and dsRNA-2) of 6192 and 5567 bp. Each molecule contained a unique ORF (5487 and 4836 nucleotides in dsRNA-1 and dsRNA-2, respectively). The ORF of dsRNA-1 encodes a 205-kDa polypeptide that shares 58% amino acid sequence identity with the RNA-dependent RNA polymerase (RdRp) encoded by dsRNA-1 of Alternaria sp. SCFS-3 botybirnavirus (ABRV1), whereas the ORF of dsRNA-2 encodes a 180-kDa polypeptide that shares 52% amino acid sequence identity with an unclassified protein encoded by dsRNA-2 of ABRV1. Genome organization and phylogenetic analysis based on the amino acid sequences of RdRps in members of different dsRNA virus families showed that the dsRNAs in the 6.5-kbp band correspond to the genome of a new botybirnavirus that we have named “Botrytis cinerea botybirnavirus 1”.

Notes

Acknowledgements

This work was supported by FONDECYT postdoctoral Project no. 3160278.

Funding

This work was financially supported by the National Commission for Scientific and Technological Research (CONICYT) through the postdoctoral Project no. 3160278.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

In this study, the authors did not perform any experiments using human participants or animals.

References

  1. 1.
    Ghabrial SA, Castón JR, Jiang D, Nibert ML, Suzuki N (2015) 50-plus years of fungal viruses. Virology 479–480:356–368CrossRefGoogle Scholar
  2. 2.
    Zhang R, Liu S, Chiba S et al (2014) A novel single-stranded RNA virus isolated from a phytopathogenic filamentous fungus, Rosellinia necatrix, with similarity to hypo-like viruses. Front Microbiol 5:360Google Scholar
  3. 3.
    Suzuki N (2017) Frontiers in fungal virology. J Gen Plant Pathol 83:419–423CrossRefGoogle Scholar
  4. 4.
    Liu L, Wang Q, Cheng J, Fu Y, Jiang D, Xie J (2015) Molecular characterization of a bipartite double-stranded RNA virus and its satellite-like RNA co-infecting the phytopathogenic fungus Sclerotinia sclerotiorum. Front Microbiol 6:406Google Scholar
  5. 5.
    Ran H, Liu L, Li B, Chen J, Fu Y, Jiang D, Xie J (2016) Co-infection of a hypovirulent isolate of Sclerotinia sclerotiorum with a new botybirnavirus and a strain of a mitovirus. Virol J 13:92CrossRefGoogle Scholar
  6. 6.
    Xiang J, Fu M, Hong N, Zhai L, Xiao F, Wang G (2017) Characterization of a novel botybirnavirus isolated from a phytopathogenic Alternaria fungus. Arch Virol 162:3907–3911CrossRefGoogle Scholar
  7. 7.
    Wang H, Li C, Cai L, Fang S, Zheng L, Yan F, Zhang S, Liu Y (2018) The complete genomic sequence of a novel botybirnavirus isolated from a phytopathogenic Bipolaris maydis. Virus Genes 54:733–736CrossRefGoogle Scholar
  8. 8.
    Wu M, Jin F, Zhang J, Yang L, Jiang D, Li G (2012) Characterization of a novel bipartite double-stranded RNA mycovirus conferring hypovirulence in the phytopathogenic fungus Botrytis porri. J Virol 86:6605–6619CrossRefGoogle Scholar
  9. 9.
    Williamson B, Tudzynski B, Tudzynski P, van Kan JA (2007) Botrytis cinerea: the cause of grey mould disease. Mol Plant Pathol 8:561–580CrossRefGoogle Scholar
  10. 10.
    Elad Y, Pertot I, Prado AMC, Stewart A (2016) Plant hosts of Botrytis spp. In: Fillinger S, Elad Y (eds) Botrytis—the fungus, the pathogen and its management in agricultural systems. Springer, Dordrecht, pp 415–458Google Scholar
  11. 11.
    Wu M, Zhang J, Yang L, Li G (2016) RNA mycoviruses and their role in Botrytis biology. In: Fillinger S, Elad Y (eds) Botrytis—the fungus, the pathogen and its management in agricultural systems. Springer, Dordrecht, pp 71–90CrossRefGoogle Scholar
  12. 12.
    Potgieter CA, Castillo A, Castro M, Cottet L, Morales A (2013) A wild-type Botrytis cinerea strain co-infected by double-stranded RNA mycoviruses presents hypovirulence-associated traits. Virol J 10:220CrossRefGoogle Scholar
  13. 13.
    Hao F, Ding T, Wu M, Zhang J, Yang L, Chen W, Li G (2018) Two novel hypovirulence-associated mycoviruses in the phytopathogenic fungus Botrytis cinerea: molecular characterization and suppression of infection cushion formation. Viruses 10:254CrossRefGoogle Scholar
  14. 14.
    Hao F, Zhou Z, Wu M, Li G (2017) Molecular characterization of a novel endornavirus from the phytopathogenic fungus Botrytis cinerea. Arch Virol 162:313–316CrossRefGoogle Scholar
  15. 15.
    Wu M, Zhang L, Li G, Jiang D, Ghabrial SA (2010) Genome characterization of a debilitation-associated mitovirus infecting the phytopathogenic fungus Botrytis cinerea. Virology 406:117–126CrossRefGoogle Scholar
  16. 16.
    Hao F, Wu M, Li G (2018) Molecular characterization and geographic distribution of a mymonavirus in the population of Botrytis cinerea. Viruses 10:432CrossRefGoogle Scholar
  17. 17.
    Donaire L, Rozas J, Ayllón MA (2016) Molecular characterization of Botrytis ourmia-like virus, a mycovirus close to the plant pathogenic genus Ourmiavirus. Virology 489:158–164CrossRefGoogle Scholar
  18. 18.
    Castillo A, Cottet L, Castro M, Sepúlveda F (2011) Rapid isolation of mycoviral double-stranded RNA from Botrytis cinerea and Saccharomyces cerevisiae. Virol J 8:38CrossRefGoogle Scholar
  19. 19.
    Vilches S, Castillo A (1997) A double-stranded RNA mycovirus in Botrytis cinerea. FEMS Microbiol Lett 155:125–130CrossRefGoogle Scholar
  20. 20.
    Potgieter AC, Steele AD, van Dijk AA (2002) Cloning of complete genome sets of six dsRNA viruses using an improved cloning method for large dsRNA genes. J Gen Virol 83:2215–2223CrossRefGoogle Scholar
  21. 21.
    Stucky BJ (2012) SeqTrace: a graphical tool for rapidly processing DNA sequencing chromatograms. J Biomol Tech 23:90–93CrossRefGoogle Scholar
  22. 22.
    Huang X, Madan A (1999) CAP3: a DNA sequence assembly program. Genome Res 9:868–877CrossRefGoogle Scholar
  23. 23.
    Wheeler DL, Church DM, Federhen S, Lash AE, Madden TL, Pontius JU, Schuler GD, Schriml LM, Sequeira E, Tatusova TA, Wagner L (2003) Database resources of the National Center for Biotechnology. Nucleic Acids Res 31:28–33CrossRefGoogle Scholar
  24. 24.
    Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780CrossRefGoogle Scholar
  25. 25.
    Darriba D, Taboada GL, Doallo R, Posada D (2011) ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics 27:1164–1165CrossRefGoogle Scholar
  26. 26.
    Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratorio de Control Biológico y Nanotecnología, Departamento de Biología, Facultad de Química y BiologíaUniversidad de Santiago, ChileEstación CentralChile
  2. 2.Department of Biochemistry, Centre for Human MetabolomicsNorth-West UniversityPotchefstroomSouth Africa
  3. 3.Deltamune (Pty) LtdCenturionSouth Africa
  4. 4.Departamento de Ciencias Básicas, Facultad de CienciasUniversidad Santo TomásSantiagoChile

Personalised recommendations