Advertisement

Archives of Virology

, Volume 164, Issue 4, pp 1187–1192 | Cite as

Yellow fever virus modulates cytokine mRNA expression and induces activation of caspase 3/7 in the human hepatocarcinoma cell line HepG2

  • Gustavo Moraes HolandaEmail author
  • Samir Mansour Morais Casseb
  • Juarez Antônio Simões Quaresma
  • Pedro Fernando Costa Vasconcelos
  • Ana Cecília Ribeiro Cruz
Brief Report
  • 169 Downloads

Abstract

Yellow fever virus (YFV) penetrates the skin through the bite of a vector mosquito and spreads to various organs, mainly the liver, where it causes lesions and induces necrosis and apoptosis. We evaluated the mRNA expression of various cytokines and the activation of caspases in HepG2 cells infected with YFV. We observed that interferon-α (IFN-α) expression decreased and IFN-β, transforming growth factor (TGF)-β IIIR, interleukin (IL)-6, and IL-8 expression increased in cells infected with genotype 1. In contrast, TNF-α expression increased in cells infected with genotype 2 but not with genotype 1. This provides insights into the role of cytokine regulation in yellow fever.

Notes

Compliance with ethical standards

Conflict of interest

All of the authors declare that they have no conflict of interest.

Research involving human participant and animals

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. 1.
    Robertson S, Hull B, Tomori O et al (1996) Yellow fever: a decade of reemergence. JAMA 276:1157–1162CrossRefGoogle Scholar
  2. 2.
    Vasconcelos PFC (2003) Febre amarela. Rev Soc Bras Med Trop 36:275–293.  https://doi.org/10.1590/S0037-86822003000200012 CrossRefGoogle Scholar
  3. 3.
    Christophers R (1960) Aedes aegypti, the yellow fever mosquito. Cambridge University Press, Cambridge, p 1Google Scholar
  4. 4.
    Quaresma JAS, Barros VLRS, Pagliari C et al (2006) Revisiting the liver in human yellow fever: Virus-induced apoptosis in hepatocytes associated with TGF-β, TNF-α and NK cells activity. Virology 345:22–30.  https://doi.org/10.1016/j.virol.2005.09.058 CrossRefGoogle Scholar
  5. 5.
    Santos NOS, Romanos MTV, Wigg M (2008) Introdução à Virologia Humana. Guanabara-Koogan, Rio de JaneiroGoogle Scholar
  6. 6.
    Canbay A, Guicciardi ME, Higuchi H et al (2003) Cathepsin B inactivation attenuates hepatic injury and fibrosis during cholestasis. J Clin Investig 112:152–159.  https://doi.org/10.1172/JCI200317740 CrossRefGoogle Scholar
  7. 7.
    Witwer KW, Sisk JM, Gama L, Clements JE (2011) MicroRNA regulation of IFNβ protein expression: rapid and sensitive modulation of the innate immune response. J Immunol 184:2369–2376.  https://doi.org/10.4049/jimmunol.0902712.MicroRNA CrossRefGoogle Scholar
  8. 8.
    Domingo C, Patel P, Yillah J et al (2012) Advanced yellow fever virus genome detection in point-of-care facilities and reference laboratories. J Clin Microbiol 50:4054–4060.  https://doi.org/10.1128/JCM.01799-12 CrossRefGoogle Scholar
  9. 9.
    Monath TP, Vasconcelos PFC (2015) Yellow fever. J Clin Virol 64:160–173.  https://doi.org/10.1016/j.jcv.2014.08.030 CrossRefGoogle Scholar
  10. 10.
    Nunes MRT, Palacios G, Cardoso JF et al (2012) Genomic and phylogenetic characterization of Brazilian yellow fever virus strains. J Virol 86:13263–13271.  https://doi.org/10.1128/JVI.00565-12 CrossRefGoogle Scholar
  11. 11.
    Laurent-rolle M, Morrison J, Rajsbaum R et al (2015) The interferon signaling antagonist function of yellow fever virus NS5 protein is activated by type I interferon. Cell Host Microbe 16:314–327.  https://doi.org/10.1016/j.chom.2014.07.015.The CrossRefGoogle Scholar
  12. 12.
    Bertoletti A, Maini MK (2000) Protection or damage: a dual role for the virus-specific cytotoxic T lymphocyte response in hepatitis B and C infection? Curr Opin Microbiol 3:387–392.  https://doi.org/10.1016/S0952-7915(00)00108-4 CrossRefGoogle Scholar
  13. 13.
    Pedersen IM, Cheng G, Wieland S et al (2007) Interferon modulation of cellular microRNAs as an antiviral mechanism. Nature 449:919–922.  https://doi.org/10.1038/nature06205.Interferon CrossRefGoogle Scholar
  14. 14.
    ter Meulen J, Sakho M, Koulemou K et al (2004) Activation of the cytokine network and unfavorable outcome in patients with yellow fever. J Infect Dis 190:1821–1827.  https://doi.org/10.1086/425016 CrossRefGoogle Scholar
  15. 15.
    Bae H-G, Domingo C, Tenorio A et al (2008) Immune response during adverse events after 17D-derived yellow fever vaccination in Europe. J Infect Dis 197:1577–1584.  https://doi.org/10.1086/587844 CrossRefGoogle Scholar
  16. 16.
    Sbrana E, Xiao S-Y, Popov VL et al (2006) Experimental yellow fever virus infection in the golden hamster (Mesocricetus auratus) III. Clinical laboratory values. Am J Trop Med Hyg 74:1084–1089.  https://doi.org/10.1086/320200 CrossRefGoogle Scholar
  17. 17.
    Cullen B (2006) Viruses and microRNAs. Nat Genet 38:26–30CrossRefGoogle Scholar
  18. 18.
    Roy S, Benz F, Luedde T, Roderburg C (2015) The role of miRNAs in the regulation of inflammatory processes during hepatofibrogenesis. Hepatobiliary Surg Nutr 4:24–33.  https://doi.org/10.3978/j.issn.2304-3881.2015.01.05 Google Scholar
  19. 19.
    Holanda GM, Mansour S, Casseb M et al (2017) Yellow fever virus modulates the expression of key proteins related to the microRNA pathway in the human hepatocarcinoma cell line HepG2. Viral Immunol 30:1–6.  https://doi.org/10.1089/vim.2016.0149 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • Gustavo Moraes Holanda
    • 1
    Email author
  • Samir Mansour Morais Casseb
    • 1
  • Juarez Antônio Simões Quaresma
    • 1
  • Pedro Fernando Costa Vasconcelos
    • 1
  • Ana Cecília Ribeiro Cruz
    • 1
  1. 1.Instituto Evandro ChagasAnanindeuaBrazil

Personalised recommendations