Archives of Virology

, Volume 164, Issue 2, pp 625–628 | Cite as

Complete genome analysis of a novel phage GW1 lysing Cronobacter

  • Haiyan Zeng
  • Wenjing He
  • Chengsi Li
  • Jumei Zhang
  • Na Ling
  • Yu Ding
  • Liang Xue
  • Moutong Chen
  • Haoming Wu
  • Qingping WuEmail author
Annotated Sequence Record


A newly identified lytic Cronobacter phage, GW1, was isolated from the Pearl River of Guangzhou, China. GW1 had a double-stranded DNA genome of 39,695 nucleotides with an average GC content of 53.18 %. Among the 49 open reading frames (ORFs) identified, genes for rRNA, tRNA, antibiotic resistance, and virulence factors were not found in the phage genome. The morphology, genomic features, and phylogenetic position of GW1 revealed that it represents a new species in the genus T7virus. This novel lytic Cronobacter phage may provide an alternative for phage therapy and biocontrol against Cronobacter.



This work was supported by grants from the National Natural Science Foundation of China (31601571), the National Key R&D Program of China (2017YFC1601200), Pearl River S&T Nova Program of Guangzhou (201806010062), the Natural Science Foundation of Guangdong Province (2016A030310315), and GDAS’ Special Project of Science and Technology Development (2017GDASCX-0201). All authors read and approved the final manuscript. None of the authors reported a conflict of interest.

Supplementary material

705_2018_4084_MOESM1_ESM.pdf (88 kb)
Supplementary material 1 (PDF 88 kb)
705_2018_4084_MOESM2_ESM.pdf (442 kb)
Supplementary material 2 (PDF 441 kb)
705_2018_4084_MOESM3_ESM.pdf (39 kb)
Supplementary material 3 (PDF 38 kb)
705_2018_4084_MOESM4_ESM.pdf (52 kb)
Supplementary material 4 (PDF 51 kb)


  1. 1.
    Adriaenssens E, Brister JR (2017) How to name and classify your phage: an informal guide. Viruses. Google Scholar
  2. 2.
    Alsonosi A, Hariri S, Kajsik M, Orieskova M, Hanulik V, Roderova M, Petrzelova J, Kollarova H, Drahovska H, Forsythe S, Holy O (2015) The speciation and genotyping of Cronobacter isolates from hospitalised patients. Eur J Clin Microbiol Infect Dis 34(10):1979–1988. CrossRefGoogle Scholar
  3. 3.
    Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402CrossRefGoogle Scholar
  4. 4.
    Capra ML, Del LQA, Ackermann HW, Moineau S, Reinheimer JA (2006) Characterization of a new virulent phage (MLC-A) of Lactobacillus paracasei. J Dairy Sci 89(7):2414–2423. CrossRefGoogle Scholar
  5. 5.
    Friedemann M (2009) Epidemiology of invasive neonatal Cronobacter (Enterobacter sakazakii) infections. Eur J Clin Microbiol Infect Dis 28(11):1297–1304. CrossRefGoogle Scholar
  6. 6.
    Garcia P, Martinez B, Obeso JM, Rodriguez A (2008) Bacteriophages and their application in food safety. Lett Appl Microbiol 47(6):479–485. CrossRefGoogle Scholar
  7. 7.
    Ikeda RA, Richardson CC (1986) Interactions of the RNA polymerase of bacteriophage T7 with its promoter during binding and initiation of transcription. Proc Natl Acad Sci USA 83(11):3614–3618CrossRefGoogle Scholar
  8. 8.
    Joseph S, Sonbol H, Hariri S, Desai P, McClelland M, Forsythe SJ (2012) Diversity of the Cronobacter genus as revealed by multilocus sequence typing. J Clin Microbiol 50(9):3031–3039. CrossRefGoogle Scholar
  9. 9.
    Kajsík M, Oslanecová L, Szemes T, Hýblová M, Bilková A, Drahovská H, Turňa J (2014) Characterization and genome sequence of Dev2, a new T7-like bacteriophage infecting Cronobacter turicensis. Arch Virol 159(11):3013–3019CrossRefGoogle Scholar
  10. 10.
    Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870–1874. CrossRefGoogle Scholar
  11. 11.
    Liu H, Cui JH, Cui ZG, Hu GC, Yang YL, Li J, Shi YW (2013) Cronobacter carriage in neonate and adult intestinal tracts. Biomed Environ Sci BES 26(10):861–864. Google Scholar
  12. 12.
    Michalewicz J, Nicholson AW (1992) Molecular cloning and expression of the bacteriophage T7 0.7(protein kinase) gene. Virology 186(2):452–462CrossRefGoogle Scholar
  13. 13.
    Nakai H, Richardson CC (1986) Interactions of the DNA polymerase and gene 4 protein of bacteriophage T7. Protein-protein and protein-DNA interactions involved in RNA-primed DNA synthesis. J Biol Chem 261(32):15208–15216Google Scholar
  14. 14.
    O’Flaherty S, Ross RP, Flynn J, Meaney WJ, Fitzgerald GF, Coffey A (2005) Isolation and characterization of two anti-staphylococcal bacteriophages specific for pathogenic Staphylococcus aureus associated with bovine infections. Lett Appl Microbiol 41(6):482–486. CrossRefGoogle Scholar
  15. 15.
    Owen-Hughes TA, Pavitt GD, Santos DS, Sidebotham JM, Hulton CS, Hinton JC, Higgins CF (1992) The chromatin-associated protein H-NS interacts with curved DNA to influence DNA topology and gene expression. Cell 71(2):255–265CrossRefGoogle Scholar
  16. 16.
    Parikka KJ, Le Romancer M, Wauters N, Jacquet S (2017) Deciphering the virus-to-prokaryote ratio (VPR): insights into virus-host relationships in a variety of ecosystems. Biol Rev Camb Philos Soc 92(2):1081–1100. CrossRefGoogle Scholar
  17. 17.
    Studier FW, Movva NR (1976) SAMase gene of bacteriophage T3 is responsible for overcoming host restriction. J Virol 19(1):136–145Google Scholar
  18. 18.
    Ueda S (2017) Occurrence of Cronobacter spp. in dried foods, fresh vegetables and soil. Biocontrol Sci 22(1):55–59. CrossRefGoogle Scholar
  19. 19.
    Wang Q, Zeng X, Yang Q, Yang C (2018) Identification of a bacteriophage from an environmental multidrug-resistant E. coli isolate and its function in horizontal transfer of ARGs. Sci Total Env 639:617–623. CrossRefGoogle Scholar
  20. 20.
    Young I, Wang I, Roof WD (2000) Phages will out: strategies of host cell lysis. Trends Microbiol 8(3):120–128CrossRefGoogle Scholar
  21. 21.
    Yuan L, Cui Z, Wang Y, Guo X, Zhao Y (2014) Complete genome sequence of virulent bacteriophage SHOU24, which infects foodborne pathogenic Vibrio parahaemolyticus. Arch Virol 159(11):3089–3093. CrossRefGoogle Scholar
  22. 22.
    Zhang X, Studier FW (2004) Multiple roles of T7 RNA polymerase and T7 lysozyme during bacteriophage T7 infection. J Mol Biol 340(4):707–730. CrossRefGoogle Scholar
  23. 23.
    Ziedaite G, Daugelavicius R, Bamford JK, Bamford DH (2005) The Holin protein of bacteriophage PRD1 forms a pore for small-molecule and endolysin translocation. J Bacteriol 187(15):5397–5405. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Haiyan Zeng
    • 1
  • Wenjing He
    • 1
  • Chengsi Li
    • 1
  • Jumei Zhang
    • 1
  • Na Ling
    • 1
  • Yu Ding
    • 2
  • Liang Xue
    • 1
  • Moutong Chen
    • 1
  • Haoming Wu
    • 1
  • Qingping Wu
    • 1
    Email author
  1. 1.State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Open Laboratory of Applied MicrobiologyGuangdong Institute of MicrobiologyGuangzhouChina
  2. 2.Department of Food Science and TechnologyJinan UniversityGuangzhouChina

Personalised recommendations