Advertisement

Archives of Virology

, Volume 164, Issue 2, pp 401–411 | Cite as

Characterization of newly emerged NADC30-like strains of porcine reproductive and respiratory syndrome virus in China

  • Hongliang Zhang
  • Chaoliang LengEmail author
  • Yushan Ding
  • Hongyue Zhai
  • Zhen Li
  • Lirun Xiang
  • Wenli Zhang
  • Chunxiao Liu
  • Minhua Li
  • Jiazeng Chen
  • Yun Bai
  • Yunchao Kan
  • Lunguang Yao
  • Jinmei Peng
  • Qian Wang
  • Yan-Dong Tang
  • Tongqing An
  • Xuehui Cai
  • Zhijun TianEmail author
  • Guangzhi TongEmail author
Original Article

Abstract

Different strains of porcine reproductive and respiratory syndrome virus (PRRSV) have emerged and circulated in different regions of mainland China since 1996, particularly after 2006. In 2012, NADC30-like PRRSV was first isolated in Henan Province. By 2016, it had spread to most provinces in China. In the present study, the whole genomes (excluding the poly(A) tails) of 13 newly emerged NADC30-like PRRSV strains were sequenced and analyzed. Furthermore, the pathogenicity of SD53-1603, one of the 13 PRRSV strains, was assessed. Phylogenetic analysis showed that these 13 newly emerged NADC30-like PRRSV strains, together with some reference strains, formed a new subgroup (subgroup 5), characterized by a predicted 131-amino-acid deletion in the nonstructural protein (NSP) 2. However, low levels of whole-genome similarity and a wide variety of recombination patterns complicated the classification of the NADC30-like PRRSV isolates. Interestingly, almost all of the recombination breakpoints found in these 13 PRRSV isolates and other NADC30-like PRRSV isolates occurred in genes encoding NSPs and/or minor structural proteins. In addition, piglets infected with the newly emerged NADC30-like strain SD53-1603 displayed clear clinical respiratory symptoms and underwent typical pathological changes. The findings may be useful for elucidating the characteristics and epidemic status of NADC30-like PRRSV in China.

Notes

Acknowledgements

This work was funded by the National Key R&D Program (2016YFD0500100), the National Natural Science Foundation of China (Nos. 31502097 and 31371381) and the Scientific and Technological Project of Henan Province (182102110240 and 182102110084).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This study was approved by the Animal Ethics Committee of the School of Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences and was performed in accordance with animal ethics guidelines and approved protocols. The Animal Ethics Committee Approval Number was SYXK (Hei) 2011022.

References

  1. 1.
    Cavanagh D (1997) Nidovirales: a new order comprising Coronaviridae and Arteriviridae. Arch Virol 142:629–633Google Scholar
  2. 2.
    Collins JE, Benfield DA, Christianson WT, Harris L, Hennings JC, Shaw DP, Goyal SM, McCullough S, Morrison RB, Joo HS et al (1992) Isolation of swine infertility and respiratory syndrome virus (isolate ATCC VR-2332) in North America and experimental reproduction of the disease in gnotobiotic pigs. J Vet Diagn Invest 4:117–126.  https://doi.org/10.1177/104063879200400201 CrossRefGoogle Scholar
  3. 3.
    Nelsen CJ, Murtaugh MP, Faaberg KS (1999) Porcine reproductive and respiratory syndrome virus comparison: divergent evolution on two continents. J Virol 73:270–280Google Scholar
  4. 4.
    Wensvoort G, Terpstra C, Pol JM, ter Laak EA, Bloemraad M, de Kluyver EP, Kragten C, van Buiten L, den Besten A, Wagenaar F et al (1991) Mystery swine disease in The Netherlands: the isolation of Lelystad virus. Vet Q 13:121–130.  https://doi.org/10.1080/01652176.1991.9694296 CrossRefGoogle Scholar
  5. 5.
    Dea S, Gagnon CA, Mardassi H, Pirzadeh B, Rogan D (2000) Current knowledge on the structural proteins of porcine reproductive and respiratory syndrome (PRRS) virus: comparison of the North American and European isolates. Arch Virol 145:659–688.  https://doi.org/10.1007/s007050050662 CrossRefGoogle Scholar
  6. 6.
    Firth AE, Zevenhoven-Dobbe JC, Wills NM, Go YY, Balasuriya UB, Atkins JF, Snijder EJ, Posthuma CC (2011) Discovery of a small arterivirus gene that overlaps the GP5 coding sequence and is important for virus production. J Gen Virol 92:1097–1106.  https://doi.org/10.1099/vir.0.029264-0 CrossRefGoogle Scholar
  7. 7.
    Johnson CR, Griggs TF, Gnanandarajah J, Murtaugh MP (2011) Novel structural protein in porcine reproductive and respiratory syndrome virus encoded by an alternative ORF5 present in all arteriviruses. J Gen Virol 92:1107–1116.  https://doi.org/10.1099/vir.0.030213-0 CrossRefGoogle Scholar
  8. 8.
    Fang Y, Treffers EE, Li Y, Tas A, Sun Z, van der Meer Y, de Ru AH, van Veelen PA, Atkins JF, Snijder EJ, Firth AE (2012) Efficient -2 frameshifting by mammalian ribosomes to synthesize an additional arterivirus protein. Proc Natl Acad Sci USA 109:E2920–E2928.  https://doi.org/10.1073/pnas.1211145109 CrossRefGoogle Scholar
  9. 9.
    Meulenberg JJ, de Meijer EJ, Moormann RJ (1993) Subgenomic RNAs of Lelystad virus contain a conserved leader-body junction sequence. J Gen Virol 74:1697–1701.  https://doi.org/10.1099/0022-1317-74-8-1697 CrossRefGoogle Scholar
  10. 10.
    Kappes MA, Miller CL, Faaberg KS (2013) Highly divergent strains of porcine reproductive and respiratory syndrome virus incorporate multiple isoforms of nonstructural protein 2 into virions. J Virol 87:13456–13465.  https://doi.org/10.1128/JVI.02435-13 CrossRefGoogle Scholar
  11. 11.
    Kappes MA, Miller CL, Faaberg KS (2015) Porcine reproductive and respiratory syndrome virus nonstructural protein 2 (nsp2) topology and selective isoform integration in artificial membranes. Virology 481:51–62.  https://doi.org/10.1016/j.virol.2015.01.028 CrossRefGoogle Scholar
  12. 12.
    Zhou L, Chen S, Zhang J, Zeng J, Guo X, Ge X, Zhang D, Yang H (2009) Molecular variation analysis of porcine reproductive and respiratory syndrome virus in China. Virus Res 145:97–105.  https://doi.org/10.1016/j.virusres.2009.06.014 CrossRefGoogle Scholar
  13. 13.
    An TQ, Zhou YJ, Liu GQ, Tian ZJ, Li J, Qiu HJ, Tong GZ (2007) Genetic diversity and phylogenetic analysis of glycoprotein 5 of PRRSV isolates in mainland China from 1996 to 2006: coexistence of two NA-subgenotypes with great diversity. Vet Microbiol 123:43–52.  https://doi.org/10.1016/j.vetmic.2007.02.025 CrossRefGoogle Scholar
  14. 14.
    Gao JC, Xiong JY, Ye C, Chang XB, Guo JC, Jiang CG, Zhang GH, Tian ZJ, Cai XH, Tong GZ, An TQ (2017) Genotypic and geographical distribution of porcine reproductive and respiratory syndrome viruses in mainland China in 1996–2016. Vet Microbiol 208:164–172.  https://doi.org/10.1016/j.vetmic.2017.08.003 CrossRefGoogle Scholar
  15. 15.
    Tian K, Yu X, Zhao T, Feng Y, Cao Z, Wang C, Hu Y, Chen X, Hu D, Tian X, Liu D, Zhang S, Deng X, Ding Y, Yang L, Zhang Y, Xiao H, Qiao M, Wang B, Hou L, Wang X, Yang X, Kang L, Sun M, Jin P, Wang S, Kitamura Y, Yan J, Gao GF (2007) Emergence of fatal PRRSV variants: unparalleled outbreaks of atypical PRRS in China and molecular dissection of the unique hallmark. PLoS One 2:e526.  https://doi.org/10.1371/journal.pone.0000526 CrossRefGoogle Scholar
  16. 16.
    Tong GZ, Zhou YJ, Hao XF, Tian ZJ, An TQ, Qiu HJ (2007) Highly pathogenic porcine reproductive and respiratory syndrome, China. Emerg Infect Dis 13:1434–1436.  https://doi.org/10.3201/eid1309.070399 CrossRefGoogle Scholar
  17. 17.
    Li X, Wu J, Tan F, Li Y, Ji G, Zhuang J, Zhai X, Tian K (2016) Genome characterization of two NADC30-like porcine reproductive and respiratory syndrome viruses in China. Springerplus 5:1677.  https://doi.org/10.1186/s40064-016-3336-5 CrossRefGoogle Scholar
  18. 18.
    Liu JK, Zhou X, Zhai JQ, Li B, Wei CH, Dai AL, Yang XY, Luo ML (2017) Emergence of a novel highly pathogenic porcine reproductive and respiratory syndrome virus in China. Transbound Emerg Dis 64:2059–2074.  https://doi.org/10.1111/tbed.12617 CrossRefGoogle Scholar
  19. 19.
    Sun Z, Wang J, Bai X, Ji G, Yan H, Li Y, Wang Y, Tan F, Xiao Y, Li X, Tian K (2016) Pathogenicity comparison between highly pathogenic and NADC30-like porcine reproductive and respiratory syndrome virus. Arch Virol 161:2257–2261.  https://doi.org/10.1007/s00705-016-2883-y CrossRefGoogle Scholar
  20. 20.
    Zhang Q, Jiang P, Song Z, Lv L, Li L, Bai J (2016) Pathogenicity and antigenicity of a novel NADC30-like strain of porcine reproductive and respiratory syndrome virus emerged in China. Vet Microbiol 197:93–101.  https://doi.org/10.1016/j.vetmic.2016.11.010 CrossRefGoogle Scholar
  21. 21.
    Zhao K, Ye C, Chang XB, Jiang CG, Wang SJ, Cai XH, Tong GZ, Tian ZJ, Shi M, An TQ (2015) Importation and recombination are responsible for the latest emergence of highly pathogenic porcine reproductive and respiratory syndrome virus in China. J Virol 89:10712–10716.  https://doi.org/10.1128/JVI.01446-15 CrossRefGoogle Scholar
  22. 22.
    Zhou L, Wang Z, Ding Y, Ge X, Guo X, Yang H (2015) NADC30-like strain of porcine reproductive and respiratory syndrome virus, China. Emerg Infect Dis 21:2256–2257.  https://doi.org/10.3201/eid2112.150360 CrossRefGoogle Scholar
  23. 23.
    Wang LJ, Wan B, Guo Z, Qiao S, Li R, Xie S, Chen XX, Zhang G (2017) Genomic analysis of a recombinant NADC30-like porcine reproductive and respiratory syndrome virus in China. Virus Genes 54:86–97.  https://doi.org/10.1007/s11262-017-1516-1 CrossRefGoogle Scholar
  24. 24.
    Brockmeier SL, Loving CL, Vorwald AC, Kehrli ME Jr, Baker RB, Nicholson TL, Lager KM, Miller LC, Faaberg KS (2012) Genomic sequence and virulence comparison of four type 2 porcine reproductive and respiratory syndrome virus strains. Virus Res 169:212–221.  https://doi.org/10.1016/j.virusres.2012.07.030 CrossRefGoogle Scholar
  25. 25.
    Leng CL, Tian ZJ, Zhang WC, Zhang HL, Zhai HY, An TQ, Peng JM, Ye C, Sun L, Wang Q, Sun Y, Li L, Zhao HY, Chang D, Cai XH, Zhang GH, Tong GZ (2014) Characterization of two newly emerged isolates of porcine reproductive and respiratory syndrome virus from Northeast China in 2013. Vet Microbiol 171:41–52.  https://doi.org/10.1016/j.vetmic.2014.03.005 CrossRefGoogle Scholar
  26. 26.
    Zhang H, Leng C, Feng L, Zhai H, Chen J, Liu C, Bai Y, Ye C, Peng J, An T, Kan Y, Cai X, Tian Z, Tong G (2015) A new subgenotype 2.1d isolates of classical swine fever virus in China, 2014. Infect Genet Evol 34:94–105.  https://doi.org/10.1016/j.meegid.2015.05.031 CrossRefGoogle Scholar
  27. 27.
    de Abin MF, Spronk G, Wagner M, Fitzsimmons M, Abrahante JE, Murtaugh MP (2009) Comparative infection efficiency of Porcine reproductive and respiratory syndrome virus field isolates on MA104 cells and porcine alveolar macrophages. Can J Vet Res 73:200–204Google Scholar
  28. 28.
    Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739.  https://doi.org/10.1093/molbev/msr121 CrossRefGoogle Scholar
  29. 29.
    Martin DP, Murrell B, Golden M, Khoosal A, Muhire B (2015) RDP4: detection and analysis of recombination patterns in virus genomes. Virus Evol 1:vev003.  https://doi.org/10.1093/ve/vev003 CrossRefGoogle Scholar
  30. 30.
    Wei T, Tian Z, An T, Zhou Y, Xiao Y, Jiang Y, Hao X, Zhang S, Peng J, Qiu H, Tong G (2008) Development and application of Taq Man-MGB fluorescence quantitative RT-PCR assay for detection of porcine reproductive and respiratory syndrome virus. Chin J Prev Vet Med 30:5Google Scholar
  31. 31.
    Dong J, Wang Y, Yu L, Zhang P, Liu X, Zhang L, Liu Y, Liang P, Wang L, Song C (2017) Pathogenicity of a newly emerged recombined porcine reproductive and respiratory syndrome virus strain (subgenotype III) in China. Vet Microbiol 210:162–166.  https://doi.org/10.1016/j.vetmic.2017.09.018 CrossRefGoogle Scholar
  32. 32.
    Zhang Q, Bai J, Hou H, Song Z, Zhao Y, Jiang P (2017) A novel recombinant porcine reproductive and respiratory syndrome virus with significant variation in cell adaption and pathogenicity. Vet Microbiol 208:150–158.  https://doi.org/10.1016/j.vetmic.2017.07.028 CrossRefGoogle Scholar
  33. 33.
    Shi M, Lam TT, Hon CC, Hui RK, Faaberg KS, Wennblom T, Murtaugh MP, Stadejek T, Leung FC (2010) Molecular epidemiology of PRRSV: a phylogenetic perspective. Virus Res 154:7–17.  https://doi.org/10.1016/j.virusres.2010.08.014 CrossRefGoogle Scholar
  34. 34.
    An TQ, Tian ZJ, Xiao Y, Li R, Peng JM, Wei TC, Zhang Y, Zhou YJ, Tong GZ (2010) Origin of highly pathogenic porcine reproductive and respiratory syndrome virus, China. Emerg Infect Dis 16:365–367.  https://doi.org/10.3201/eid1602.090005 CrossRefGoogle Scholar
  35. 35.
    Liu D, Zhou R, Zhang J, Zhou L, Jiang Q, Guo X, Ge X, Yang H (2011) Recombination analyses between two strains of porcine reproductive and respiratory syndrome virus in vivo. Virus Res 155:473–486.  https://doi.org/10.1016/j.virusres.2010.12.003 CrossRefGoogle Scholar
  36. 36.
    Tian ZJ, An TQ, Zhou YJ, Peng JM, Hu SP, Wei TC, Jiang YF, Xiao Y, Tong GZ (2009) An attenuated live vaccine based on highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) protects piglets against HP-PRRS. Vet Microbiol 138:34–40.  https://doi.org/10.1016/j.vetmic.2009.03.003 CrossRefGoogle Scholar
  37. 37.
    Bai X, Wang Y, Xu X, Sun Z, Xiao Y, Ji G, Li Y, Tan F, Li X, Tian K (2016) Commercial vaccines provide limited protection to NADC30-like PRRSV infection. Vaccine 34:5540–5545.  https://doi.org/10.1016/j.vaccine.2016.09.048 CrossRefGoogle Scholar
  38. 38.
    Zhou L, Yang B, Xu L, Jin H, Ge X, Guo X, Han J, Yang H (2017) Efficacy evaluation of three modified-live virus vaccines against a strain of porcine reproductive and respiratory syndrome virus NADC30-like. Vet Microbiol 207:108–116.  https://doi.org/10.1016/j.vetmic.2017.05.031 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Hongliang Zhang
    • 1
  • Chaoliang Leng
    • 2
    Email author
  • Yushan Ding
    • 2
  • Hongyue Zhai
    • 2
  • Zhen Li
    • 1
  • Lirun Xiang
    • 1
  • Wenli Zhang
    • 1
  • Chunxiao Liu
    • 1
  • Minhua Li
    • 1
  • Jiazeng Chen
    • 4
  • Yun Bai
    • 4
  • Yunchao Kan
    • 2
  • Lunguang Yao
    • 2
  • Jinmei Peng
    • 1
  • Qian Wang
    • 1
  • Yan-Dong Tang
    • 1
  • Tongqing An
    • 1
  • Xuehui Cai
    • 1
  • Zhijun Tian
    • 1
    Email author
  • Guangzhi Tong
    • 3
    Email author
  1. 1.State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research InstituteChinese Academy of Agricultural SciencesHarbinChina
  2. 2.Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan Provincial Engineering Laboratory of Insects Bioreactor, China-UK-NYNU-RRes Joint Laboratory of Insect BiologyNanyang Normal UniversityNanyangChina
  3. 3.Shanghai Veterinary Research InstituteChinese Academy of Agricultural SciencesShanghaiChina
  4. 4.Shandong Sinder Technology Co., LtdQingdaoChina

Personalised recommendations